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Abstract

Motivated by cognitive theories verifying that investors have limited capac-
ity to process information, we study the effects of information overload on
stock market dynamics. We construct an information overload index using
textual analysis tools on daily data from The New York Times since 1885.
We structure our empirical analysis around a discrete-time learning model,
which links information overload with asset prices and trading volume when
investors are attention constrained. We find that our index is associated
with lower trading volume and predicts higher market returns for up to 18
months, even after controlling for standard predictors and other news-based
measures. Information overload also affects the cross-section of stock re-
turns: Investors require higher risk premia to hold small, high beta, high
volatile, and unprofitable stocks. Such findings are consistent with theories
emphasizing that information overload increases information and estimation
risk and deteriorates investors’ decision accuracy amid their limited atten-
tion.
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1 Introduction

The traditional asset pricing theory assumes that prices instantly incorporate all

available information. However, the explosion of information is a defining feature

of the current media landscape, and we are often plagued with excess. Thus, in re-

ality, processing the excess information requires sufficient attention from investors,

and “a wealth of information creates a poverty of attention,” as quoted by No-

bel laureate Herber Simon. Given that investors have limited processing capacity

(Kahneman, 1973; Johnston and Pashler, 1998), does the information overload

affect their investment decisions?

In this paper, we construct a historical news-based index of information load using

textual analyses applied to two million articles published in The New York Times

since 1885. We then use these novel data to study the time-series and cross-

sectional predictive ability of information overload over returns. We structure our

empirical analysis around a discrete-time learning model, which provides a moti-

vating framework for empirical analysis by linking information overload, expected

asset prices, and trading volume.

Why does information overload affect stock market returns? We argue that fol-

lowing periods of information overload, risk-averse investors require a higher risk

premium to hold the asset because of increased information risk and estimation

risk.1 First, the investors’ attention capacity correlates negatively with the “ex-

cess” information they receive, compromising their processing ability and thus in-

creasing information asymmetry. High information asymmetry, in turn, increases

the investors’ information risk, as in Easley and O’hara (2004). Second, when

information is excessive and dispersed, extracted information is less precise than

otherwise, as some useful information will not be analyzed due to limited atten-

tion. Consequently, estimated parameters of future asset value are more likely to

be wrong, increasing investors’ uncertainty and estimation risk.2

1See for example, Coles and Loewenstein (1988); Coles et al. (1995); Leuz and Verrecchia
(2000); Francis et al. (2005); Bawden and Robinson (2009) that document the relationship be-
tween the information, estimation risks and the information load.

2Alternatively, information overload could lead to positive future asset returns through its ef-
fects on speculative demand. As information overload deteriorates investors’ attention, investors
could eventually reduce their speculative demand in such periods given that they cannot actively
trade a stock if they are not paying attention to it. A reduction in demand, in turn, reduces
trading volume (Hirshleifer et al., 2009; Hou et al., 2009), puts downward pressure on stock
prices, and leads to positive future market returns.
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We further hypothesize that information overload does not necessarily affect all

stock returns uniformly and thus, has cross-sectional effects. In the category learn-

ing model of Peng and Xiong (2006), cognitively constrained investors allocate a

higher capacity of attention to a certain group of stocks (such as large stocks or

less risky, bond-like stocks). Moreover, small, unprofitable, high beta stocks are

more difficult to arbitrage (e.g., Asquith et al., 2005; Hong and Sraer, 2016; Baker

and Wurgler, 2006). Hence, we argue that, price reactions driven by information

overload would be exacerbated for stocks with weaker arbitrage forces and those

that are subject to less attention, making them even more difficult to value and

further increasing estimation and information risk. The speculative demand for

such stocks should be particularly reduced, translating into higher future returns

in periods of information overload.

Our first task is then to quantify information load. Based on the extant litera-

ture from various disciplines, including organization science, business psychology,

accounting, and marketing, we consider the quantity and inconsistency of infor-

mation (see Eppler and Mengis, 2004; Roetzel, 2019, for a literature survey). This

literature argues that when the quantity of news increases, investors need to fol-

low and process more information, becoming cognitively overloaded. Similarly,

information quality, in addition to quantity, should be considered (Bawden and

Robinson, 2009). Even if investors do not receive too much information, but if

the information they receive is inconsistent or dispersed, then the investor’s in-

formation processing capacity might be exhausted well before the full quantity of

information is used.

To quantify quantity and inconsistency of information and construct the informa-

tion load (InfLoad) index, we first scan the full content of The New York Times

daily print edition from January 1, 1885, to December 31, 2018.3 Second, we apply

the logistic regression machine learning tool to distinguish business-related news

from other news (such as sports and weather). Third, we adopt the word clouds

of Calomiris and Mamaysky (2019) to identify the news related to financial mar-

kets only. We employ human readings on randomly selected articles to verify our

3One can argue that excess information flow from mass and social media is one of the most
salient features of the modern information age. Yet, the phenomenon is not confined to the
modern world (Roetzel, 2019; Gleick, 2011; Blair, 2012). For instance, according to Blair (2012),
even in the 13th century, information overload was present in the form of “the multitude of
books, the shortness of time, and the slipperiness of memory.”
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procedure. Finally, we define the InfLoad index as the average of the quantity and

inconsistency components of information flow in a given day. To get the quantity

component, we count the number of articles. To measure the inconsistency com-

ponent, we calculate the standard deviation of the tone of articles published in a

day, where the tone is classified via the Loughran and McDonald (2011) dictionary.

After quantifying the information load, our second task is to validate the InfLoad

index. To this end, we first show that it captures expected trends in the infor-

mation flow, such as the introduction of the internet or other news outlets and

major economic events or stress periods. Second, InfLoad is significantly cor-

related with various proxies of investor attention and asymmetric information,

including the Google Search Volume Index, analysts’ forecast dispersion, bid-ask

spreads, and stock market volatility. Moreover, excess information flow increases

the co-movement between stocks. Overall, these exercises bolster our confidence

that our index accurately measures the information load investors face in a given

period.

We then introduce a discrete-time learning model as a motivating framework for

our empirical analysis. The model includes a single asset and two investors who

extract information from the news and update their beliefs on the asset value

according to Bayes’ rule. Importantly, the investors are subject to a limited at-

tention capacity, which we model as a nonlinear inverse function of information

load. By doing so, we allow agents’ decision quality to improve with new informa-

tion, but only up to a point. When their capacity to process information is full,

the additional information received diminishes the decision quality, in line with

the predictions of early cognitive scientists, such as Schroder et al. (1967); Miller

(1956); Simon and Newell (1971). Thus, investors’ attention span is especially

decreased in periods of information overload, which restricts them from interpret-

ing the news perfectly, reducing the precision of their extracted information and

implying heterogeneous posterior beliefs.4 Heterogeneous beliefs, in turn, affect

expected returns and trading volume.

To test the predictive ability of information overload over stock market returns, we

quantify information overload as the proportion of days in which InfLoad is above

three different historical thresholds in a given month with increasing extremity:

4For example, even if attention-constrained investors read the same newspaper at the same
time, they can only imperfectly analyze new information by paying attention to a random fraction
of the news or possibly misinterpreting it.
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historical mean, a one standard deviation band, and a two standard deviation

band. Such thresholds help us quantify the economic effects of information over-

load on returns depending on how “excessive” the flow is.5

We first find that, when the information load is “moderate” (when it is above the

historical mean), higher news flows increase trading volume, likely due to increased

investor attention, as in the model of Barber and Odean (2008). Investors buy

stocks when their attention span increases, creating a temporary positive price

pressure, but it does not significantly affect market returns.

Second, consistent with the model prediction, “high” information load (when it

is one standard deviation above the historical mean) is followed by high excess

stock market returns. In this case, information overload rather puts constraints

on investors’ processing capacity, suggesting increased information and estimation

risk as well as decreased investor attention.

Third, when information load is “excessive” (two standard deviations above the

mean), the effect of extraneous news events becomes economically and statisti-

cally stronger. Excessive information leads to higher future returns. The effect

is economically meaningful: A one standard deviation increase in excess informa-

tion load is associated with a 35 basis point increase in monthly market returns.

The predictive power of information overload over returns is persistent and re-

verses in 18 months. Moreover, in periods of excess information load, investors

are distracted more and pay less attention to stock, and thus the trading volume

decreases significantly.

Fourth, information overload contains additional explanatory power on market re-

turns beyond the market sentiment (SENT) measure of Tetlock (2007) and Garcia

(2013) and other news-based measures, namely the Economic Policy Uncertainty

index (EPU) from Baker et al. (2016), the Geopolitical Risk Index (GPR) from

Caldara and Iacoviello (2018), and the News-implied Volatility Index (NVIX) from

Manela and Moreira (2017). In regressions where we include all of the news-based

5One can think of these historical thresholds as the representative agent’s processing capacity
limits or the “usual” level of information load. The existing literature provides at least two
possible overarching explanations for this turning point (see Roetzel, 2019, for a survey). First,
the decision-maker may stop acquiring information when her processing capacity is reached.
Second, she has limited resources (e.g., time or budget), preventing her from using the available
information efficiently. Thus, using historical thresholds, we implicitly assume that investors can
learn to digest more or less information as they become accustomed to it. Similarly, they can
adjust their resources based on the usual information flow.
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measures together, SENT, NVIX, and GPR do not have a statistically significant

explanatory power over market returns, and EPU is significant at a 10% level,

whereas information overload is still a significant predictor of market returns at

a 5% level. These results are not surprising given that both EPU and GPR are

shown to be useful predictors of macroeconomic series rather than financial ones.

Shapley value analysis reveals that information overload alone contributes about

12 to the variation in market returns, and the other news-based measures (SENT,

EPU, GPR, and NVIX) together explain about 35% of the variation, with the

contribution of EPU being the highest.

Fifth, InfLoad has out-of-sample predictive ability over one-month-ahead market

returns. It delivers positive out-of-sample R2s and improves the forecast accu-

racy compared with (1) the historical mean, (2) a baseline model that excludes

the information overload, and (3) a baseline model obtained through dynamically

selecting variables by running the least absolute shrinkage and selection operator

(LASSO) regressions.

Finally, we test the effects of information overload in the cross section of stock re-

turns. To this end, we consider four long-short portfolios: big minus small stocks,

high beta minus low beta stocks, high volatility minus low volatility stocks, and

high operating profit minus low operating profit stocks. We find that investors

require higher risk premiums to hold small, high beta, highly volatile, and unprof-

itable stocks. A one standard deviation increase in information overload translates

into 45 bps higher future returns for small stocks than big ones, 89 bps higher fu-

ture returns for more volatile stocks, 76 bps higher future returns for high beta

stocks, and 48 bps higher future returns for unprofitable stocks than profitable

ones.

Overall, we find that information overload has both time-series and cross-sectional

predictive ability on stock market returns. Our findings challenge the traditional

asset pricing theories that the level of information does not affect returns, as prices

incorporate all available information instantly. It is worth emphasizing that our

results do not necessarily imply a behavioral bias. Price reactions driven by infor-

mation overload are different from the behavioral bias reaction of Tetlock (2007)

and Garcia (2013), which argue that investment decisions and price changes reflect

market sentiment. Similarly, we depart from the behavioral model of Hong and

Stein (2003), in which investors have different opinions driven by overconfidence.
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Instead, we argue that information load affects returns through the constraints in

investors’ information processing capabilities and it may provide a potential ex-

planation for the gradual information flow mechanism of Hong and Stein (1999).

In this study, we contribute to various strands of the extant literature. First,

there is a vast literature across various disciplines, including organization science,

accounting, and marketing that studies the effects of information load on agents’

decision quality (Eppler and Mengis, 2004; Edmunds and Morris, 2000; Grisé and

Gallupe, 1999; Loughran and McDonald, 2014). We apply this field to finance by

studying the effects of information overload on stock market returns and trading

volume.

Second, we contribute to the literature that focuses on investors’ limited attention

and its links to stock market dynamics (see, for example, DellaVigna and Pollet,

2009; Hirshleifer et al., 2009; Da et al., 2011). In this paper, we construct a

historical index that quantifies the information flow agents face in a given day and

show that it is a predictor of stock returns. Various exercises suggest that our

index can be used as a valid proxy for investor attention.

Third, our paper is related to the literature on the role and content of the media

and its impact on investor behavior. Tetlock (2007) and Garcia (2013) provide

evidence that news sentiment can predict movements in stock market activity.

More recently, Calomiris and Mamaysky (2019) study the effect of news flows on

risk and return predictability in a cross-country setting. In this paper, we provide

supporting evidence on the significant role of the media in stock markets similar

to the aforementioned papers. We find that not only market sentiment but also

the excessive amount of information predict market returns.

Finally, we contribute to the growing literature that relies on news and textual-

analysis tools to construct several indexes to proxy financial and economic series,

including Baker et al. (2016); Manela and Moreira (2017); Caldara and Iacoviello

(2018). In this paper, we construct a news-based historical index that measures

the level of excess information agents face. It is correlated by up to 30% with

the other news-based measures of uncertainty and risk, yet it contains relevant

information that is not captured by the others.
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2 Construction and validation of the information

load index

2.1 Measuring information load

We construct the information load index in four steps. First, we scan the full con-

tent of daily The New York Times newspapers from January 1, 1885, to December

31, 2018. We obtain titles, keywords, and the lead paragraph of each article pub-

lished. Given the extensive data and the fact that the main message and tonality

must be set out in the first paragraph as noted in the The New York Times writing

practices, we obtain the lead paragraph as in Chan (2003) as opposed to the full

article.6

Our second task is to distinguish the financial and economic news (“business

news”) from other news (i.e., sports, weather, etc.). Post-1981, the name of the

corresponding section of the article is provided, which enables us to identify the

business news. For the pre-1981 period, we classify each article using the Logistic

Regression machine learning tool.7 Specifically, we train the tool on the articles

with section names, so that it can learn from the already tagged news how to

classify the rest of the articles. We end up with a total of 2,199,210 business news

articles.

Third, within the business news, we focus on news related to financial markets

only. To create this sample, we adopt the word clouds of Calomiris and Mamaysky

(2019). The authors employ the Louvain method (Blondel et al., 2008), which

assigns salient words to mutually exclusive topic areas based on word co-occurrence

and divides words into topic groups. They provide word clouds for the five topic

groups: markets, governments, commodities, corporate governance and structure,

and the extension of credit. We adopt the word clouds of the topic markets.

Clearly, an article can contain news on more than one topic. Thus, following

Calomiris and Mamaysky (2019), for a given article j published in day d, we

6See https://archive.nytimes.com/www.nytimes.com/learning/general/weblines/411.html
7We apply Neural Networks, Gradient Method, and Logistic Regression algorithms. After

training, testing, and validating algorithms, we conclude that the Logistic Regression has the
best performance, with an accuracy of 92.5%, and thus we use the optimized parameters from
the Logistic Regression model to classify the news.
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assign a weight corresponding to the topic markets (Mkt), as follows:

wMkt,j,d =
CMkt,j,d

Cj,d
, (1)

where CMkt,j,d and Cj,d are the number of words associated with topic markets and

the total number of words appearing in the lead paragraph of article j in day d,

respectively. Thus, for each article, we calculate the relative frequency of words

that correspond to markets.

Finally, we construct our information load index by considering two components:

the quantity and inconsistency of information following the extant literature from

various disciplines (see Eppler and Mengis, 2004; Roetzel, 2019, for a literature

survey.). When the quantity of information becomes excessive, the decision accu-

racy declines as investors need to follow and process more information. Not only

the quantity, but also the content of the news matters. Inconsistent news can

plague an investor’s limited information processing capacity, as it could lead to

more confusion in interpreting the available information. After reading such news,

investors can fail to recall and respond appropriately to the information provided

(Hirst and Hopkins, 1998). Thus, we define the information load index (InfLoadd)

as the daily average of these (scaled) components:8

InfLoadd = avg(Qd, INCd), (2)

where Qd and INCd measure the quantity and the inconsistency of the news flow

in day d, respectively.

We measure the quantity by counting the number of articles related to financial

markets published on day d. In other words, we sum the weights associated with

market news, wMkt,j,d, introduced in (1), across all articles:

Qd =
∑
j

wMkt,j,d. (3)

To quantify inconsistency, we estimate the tone of each article on a given day by

calculating the ratio of positive words in excess of the negative ones, divided by

8In Section 4.5, we present the results when we employ a principal component analysis or
when we consider the quantity and inconsistency components separately.
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the total number of words. Then, we calculate the standard deviation of article

tones published on the same day. That is, for article j and day d:

INCd = σTonej,d , (4)

with the tone of each article obtained as:

Tonej,d =
npos,j,d − nneg,j,d

nj,d
× wMkt,j,d, (5)

where, npos,j,d, nneg,j,d, and nj,d are the number of positive, negative, and total

words in the lead paragraphs of financial market news articles, respectively. We

determine the positive and negative words using the financial dictionary developed

by Loughran and McDonald (2011), while carefully addressing the double negation

problem.

2.2 Validation of the information load index

In this section, we present two exercises in which we aim to validate our proposed

InfLoad index introduced in (2). First, we show that it varies over time to capture

changing trends in the media and to follow major economic events. Second, it

is significantly correlated with various proxies of investor attention, asymmetric

information, indicators of financial uncertainty, and stress, including news-based

ones. Overall, these exercises bolster our confidence in our measure InfLoad as an

accurate measure of information load.

2.2.1 Plausibility of quantifying historical news flows

To be a relevant measure of information load, InfLoad should change over time to

capture expected trends in the information flow. Figure 1 plots the information

load measure, along with the quantity and inconsistency components averaged

across days in a given year since 1885. InfLoad, Q, and INC are all positively

correlated with each other and follow an inverted-V trend overall: increasing early

in the sample and decreasing post-1990s.

Such trends are expected in the information flow throughout the sample period.

In the end, the print edition of The New York Times has changed significantly
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over time. For instance, a published newspaper in the 1900s had about the same

number of articles as today, whereas a newspaper in the 1950s had about five

times as many articles as today. In addition, post-1990s the introduction of the

internet and other news outlets such as Bloomberg or social media changed the

use of newspapers. Yet big spikes are observed even in recent periods, such as

during the 2008 Global Financial Crisis.

Moreover, we see that the information load increases during stress periods, on

average, which is not surprising given the increased news flow during periods of

uncertainty. The largest spikes coincide with the well-known episodes of stress in

the financial markets, including the Great Depression, the two world wars, and

the Global Financial Crisis.

Not only the quantity of news but also the consistency of the news follow a similar

pattern. One interesting period is the great moderation–the mid-1980s until the

Global Financial Crisis. Macroeconomic volatility in the United States (similar

to other developed economies) was significantly low during this period, possibly

driving a consistent information flow, followed by a spike post-2007.

2.2.2 Correlations with related measures

In Table 1, we present contemporaneous Pearson correlation coefficients of the

quantity of information (Q), the tone dispersion (INC), and the information load

index (InfLoad), with proxies for (1) investor attention, (2) asymmetric infor-

mation, (3) investor uncertainty, (4) financial uncertainty, and, finally, (5) other

news-based measures proposed in the literature.

First, we expect information load to be negatively correlated with investor atten-

tion. We do not have direct measures of investor attention. However, following

Da et al. (2011); Akarsu and Süer (2021), we first use the abnormal search fre-

quency in the Google Search Volume Index–ASVI as a proxy for investor atten-

tion.9 Second, we use the marketwide excess stock correlation as another proxy

9ASVI is calculated as the excess search volume in a month relative to the previous quarter:

ASVIt = log(SVIt)− log[Median(SVIt−1,SVIt−2,SVIt−3)], (6)

where SVIt is the average of 579 U.S. firms’ weekly Google Search Volume Indexes in a given
month t.
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Figure 1: Information Load

The figure presents the annual averages of the daily information load measure along with its
quantity (Q) and inconsistency (INC) components introduced in (2), (3), and (4), respectively.
Quantity is the sum of the weights related to financial markets across all articles published
on a given day. Inconsistency is the standard deviation of the tone of the articles published
in a day, where the tone is classified using the Loughran and McDonald (2011) dictionary.
InfLoad is the average of the (scaled) quantity and inconsistency components. NBER recession
periods are marked in gray. The sample period is 1885:Q1–2018:Q4. Data are obtained from the
printed edition of The New York Times, ProQuest, TDM Studio. New York Times Historical
Newspapers.

for investor inattention (CORR).10 We use this measure because limited investor

attention leads investors to process more marketwide and sectorwide information

than firm-specific information, increasing correlations among the stocks, in line

with the category-learning behavior of Peng and Xiong (2006). Table 1 rows 1

and 2 show that periods of high information load coincide with decreased Google

search volumes and increased market-wide correlation, both suggesting that the

excess news flow may increase confusion among investors, leading to more passive

portfolio trading.

Second, high information load should be associated with higher information risk

and asymmetry, as it compromises investors’ ability to process information, es-

pecially for less-informed investors (see, for example, Leuz and Verrecchia, 2000;

Bawden and Robinson, 2009; Muslu et al., 2015). To proxy the information risk,

10To obtain CORR, we use the Fama-French 25 equally-weighted portfolios formed on size
and book-to-market. For each month, we calculate the sample correlation average between all
portfolio pairs and calculate its difference from the past 24 months average.
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we rely on two limit order book metrics at stock level obtained from the monthly

Center for Research in Security Prices, CRSP 1925 US Indices Database, Whar-

ton Research Data Services and aggregated across firms (equally-weighted).11 We

show that a higher information load is associated with a higher bid-ask spread

(SPR). We then consider the dispersion of bid and ask prices by calculating the

distance between the highest ask and lowest bid prices (DIST). High information

load is significantly and negatively associated with the dispersion of the bid-ask

prices, suggesting that excess information exacerbates information asymmetries

and investor confusion.

Third, when the information is excessive and dispersed, estimated parameters of

future returns or cash flows are more likely to be wrong, increasing estimation

risk and in turn, investor uncertainty (see, for example, Coles and Loewenstein,

1988; Coles et al., 1995). To proxy the estimation risk, we first use stock market

volatility, calculated as the standard deviation of daily market returns for a given

month. Row 4 shows that high information load is associated with higher disper-

sion in trading prices. Second, we construct two measures to quantify the analysts’

estimated dispersion using the Institutional Brokers’ Estimate System (Refinitiv,

IBES North American Summary & Detail Estimates, Level 2, Current & History

Data, Adjusted and Unadjusted) summary database. Accordingly, we first calcu-

late the standard deviation of the analysis earnings-per-share (EPS) forecasts for

a given stock and time period (DISP1). Second, we calculate the average value

of the absolute deviation of the highest EPS forecast from the actual value and

the lowest EPS forecast from the actual value (DISP2). We then calculate the

cross-sectional averages for both measures. Rows 5 and 6 show that both analysts’

dispersion measures increase with higher information load, consistent with higher

estimation risk in the periods of excess information.

Fourth, information load is expected to increase in times of increased financial or

economic uncertainty and stress. We find that information load increases with

the CBOE Volatility Index (VIX) and Bekaert et. al (2019)’s uncertainty (BEX)

measure. When we look at the information load components, we see that increased

uncertainty is related more to the dispersion in tone (INC) than to the quantity

of news. The correlations range from 20% to 55%, suggesting that excessive infor-

11We calculate the equally-weighted averages instead of value-weighted ones because we expect
cross-sectional differences for the big and small stocks as discussed in Section 4.4.
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mation load and economic uncertainty are distinct phenomena and that the effects

of news dispersion are more likely to operate through investor disagreement than

uncertainty. Moreover, in periods of increased financial stress, we observe a boost

in both the quantity and the inconsistency of the news (rows 9 and 10).

Finally, we compare the InfLoad index with other news-based uncertainty mea-

sures: EPU, GPR, and NVIX. The Pearson correlation coefficients range from 0.05

to 0.30, implying that the InfLoad measure is related to the aforementioned news-

based measures, yet it also captures important information that is not reflected in

those measures.

3 Information overload and financial market dy-

namics

3.1 Motivating framework

As a road map to our empirical analysis, we consider a discrete-time learning

model. Our model incorporates attention capacity as a function of the informa-

tion load. In periods of excessive information load, it is more difficult for investors

to process relevant information, making them reach their maximum attention ca-

pacity quicker, and reducing their decision accuracy rapidly—an argument with a

theoretical basis that is from psychologists and cognitive scientists such as Schroder

et al. (1967), Miller (1956), and Simon and Newell (1971).

In our model, there are two types of investors, A and B, who are rational and

subject to the same attention capacity, denoted by κ. There are two periods

(t = 0, 1) where risk-averse investors trade a single risky asset or a portfolio of

assets at t = 0 with a payoff of ν at t = 1. There are M outstanding shares

that can be traded, and each investor is born with M/2 shares. For simplicity, we

assume the risk-free rate is zero.

3.1.1 The learning process

At t = 0, both investor types A and B start with the same prior beliefs on the

true value of asset ν, with ν ∼ N (ν̄, 1/τ0), where τ0 is the precision of their prior
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beliefs on the asset value.

The investors receive news (or a load of information, denoted as InfLoad) at the

same time through the same sources that they have access to (e.g., newspapers,

analyst reports, and other media). Denote InfA and InfB as the information

extracted from the news at t = 0 by the investor types A and B, respectively:

InfA = ν + εA, εA ∼ N (0, 1/τε), (7)

InfB = ν + εB, εB ∼ N (0, 1/τε). (8)

Although the investors are subject to the same attention capacity, they differ in

their interpretation of the news (InfA 6= InfB) because their attention capacity

is finite. For example, even if attention-constrained investors read the same news-

paper at the same time, they can only imperfectly analyze new information by

paying attention to a random fraction of the news or possibly misinterpreting it.

Hence, even under perfect information, noise in the learning process is introduced

through limited capacity and information load. The precision of the extracted

information (τε) depends on the investors’ attention capacity and is assumed to

be the same for both investors for simplicity.

Using the standard Bayesian updating process, the following lemma characterizes

the investors’ posterior beliefs.

Lemma 1. The posterior beliefs of the investor types A and B at t = 0 are

normally distributed, and denoted by νA|InfA ∼ N (ν̂A, 1/τ) and νB|InfB ∼
N (ν̂B, 1/τ), respectively. The precision of posterior beliefs (τ) is given by:

τ = τ0 + τε, (9)

while the expected values of their posterior beliefs are:

ν̂A =
τ0
τ
ν̄ +

τε
τ
InfA (10)

ν̂B =
τ0
τ
ν̄ +

τε
τ
InfB. (11)

Proof. See the appendix.
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3.1.2 Quantifying the precision of the posterior beliefs

To quantify the precision of the posterior beliefs τ , we use the concept of entropy

(H) from the information theory. Let IA and IB be the reduction in entropy in

the posterior beliefs in relation to prior beliefs of the asset value for investors A

and B, respectively:12

IA = IB = H(prior beliefs)−H(posterior beliefs) =
1

2
ln

1/τ0
1/τ

. (13)

Following Sims (2003) and Peng and Xiong (2006), we assume IA and IB are linear

and positive functions of the investors’ attention capacity (κ):

IA = IB =
1

2
κ. (14)

Using (9), (13), and (14), we have

τε = τ0(e
κ − 1), (15)

τ = τ0e
κ. (16)

We assume κ has the following form:

κ(InfLoad) = φ

(
1− (InfLoad− q)2

InfLoad2 + q2

)
, (17)

where φ is the maximum attention capacity of investors and q is a given threshold

for the level of information (InfLoad) that can be processed by investors. Thus, in

line with the predictions of early cognitive theories, (17) allows attention capacity

to alter with Infload in a nonlinear way. In the model of Schroder et al. (1967), for

example, the task performance of a decision-maker initially improves as more in-

formation is received. But, when the amount of information reaches the threshold,

the additional information diminishes the quality of the decision-making.

12In a nutshell, the entropy of a random variable x measures its uncertainty. Assuming x ∼
N (µ, σ), it is defined as:

H(x) =
1

2
ln(σ) +

1

2
ln(2πe), (12)
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Using (15), (16), and (17), the precision of the extracted information (τε) and the

precision of the investors’ posterior beliefs (τ) are:

τε = τ0

(
e
φ

(
1− (InfLoad−q)2

InfLoad2+q2

)
− 1

)
, (18)

τ = τ0e
φ

(
1− (InfLoad−q)2

InfLoad2+q2

)
. (19)

Figure 2 illustrates the relation between information load and τε and τ . First,

at a given threshold q, when InfLoad=0 (i.e., there is no news), investors cannot

extract any information and do not need to use any capacity (κ = 0). Thus, the

precision of the posterior beliefs is equal to the precision of prior beliefs (τ = τ0)

and ν̂A = ν̂B = ν̄ in Lemma 1.

Figure 2: Effect of information load on the precisions of the extracted information
and posterior beliefs

Panels (a) and (b) show the effect of information load (Infload) on the precisions of the extracted
information (18) and posterior beliefs on the true value of the asset (19). We assume q = 8,
φ = 0.2 and τ0 = 1.

Second, on the other extreme, if InfLoad→ ∞ (i.e., there is an excessive infor-

mation load), the extracted information is very imprecise (i.e., τε → 0), making

κ = 0. Thus, the precision of the posterior beliefs is equal to the precision of prior

beliefs (τ = τ0) and ν̂A = ν̂B = ν̄.

Finally, for the rest of the cases, the precision of the beliefs is higher than zero.

When InfLoad = q, investors allocate their maximum attention, i.e., κ = φ and

hence, the information extracted has the highest precision. This precision however,

is not perfect because φ is finite. Consequently, τε = τ0(e
φ−1) and τ = τ0e

φ. Then,
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ν̂i = (1/eφ)ν̄ + ((eφ − 1)/eφ)Inf i for i = A,B.

3.1.3 Asset returns and trading volume

At t = 0, investors maximize their constant absolute risk aversion (CARA) utility

functions based on their beliefs about the asset value. Because investors have a

CARA utility function and all stochastic variables are normally distributed, the

investors’ optimization reduces to the usual mean-variance problem (see Ingersoll,

1987; Eeckhoudt et al., 2011):

max
yi

Et[ηi]−
θ

2
V ar[ηi], i = A,B, (20)

with

ηA =
(
νA|InfA − p

)
yA and ηB =

(
νB|InfB − p

)
yB for t = 0, (21)

subject to the market clearing condition:

yA + yB = M, (22)

where θ is the level of risk aversion, p is the traded asset price at t = 0, and yA and

yB are the number of shares that investors A and B hold, respectively. νA|InfA

and νB|InfB are the investors’ posterior beliefs about the value of the asset at

t = 1 in Lemma 1. Proposition 1 and Lemma 2 follows from solving the investors’

optimization problem outlined in (20)—(22):

Proposition 1. Investors’ asset holdings and the equilibrium asset price at t = 0

are given by:

yA =
M

2
+

τ

2θ

(
ν̂A − ν̂B

)
, (23)

yB =
M

2
+

τ

2θ

(
ν̂B − ν̂A

)
(24)

p =
ν̂A + ν̂B

2
− Mθ

2τ
. (25)

Proof: See the appendix.
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Lemma 2. The expected trading volume and asset price change are:

E[volume] = E

[
1

2

∣∣∣∣M2 − yA
∣∣∣∣+

1

2

∣∣∣∣M2 − yB
∣∣∣∣] (26)

=
1

θ

√
τε
π

(27)

and

E [v − p] = E [v]− E
[
ν̂A + ν̂B

2

]
+ E

[
Mθ

2τ

]
(28)

=
Mθ

2τ
.

Proof: See the appendix.

Thus, asset price changes are determined by the average expected value of posterior

beliefs of the two investor types and the risk premium of Mθ/2τ . The investors’

asset holdings (yA and yB) and the trading volume depend on the investors’ het-

erogeneity on the expected value of their posterior beliefs (ν̂A − ν̂B). The asset

prices and trading volume are functions of information load as ν̂ depends on the

precision of the posterior beliefs (τ) and the precision of the extracted information

(τε), where both vary by information load (see Lemma 1 and (18) and (19)).

Figure 3 panel (a) visualizes the association of information load with the expected

trading volume. There are three possible scenarios. First, when InfLoad = 0,

the investors are homogenous in their posterior beliefs because they only use their

prior beliefs in the learning process (i.e., ν̂A = ν̂B = ν̄). In that scenario, there is

no trade and they hold M/2 shares.

Second, whenever InfLoad > 0, there will be a trade. Investors extract different

level of information from the news (InfA 6= InfB) because they have finite ca-

pacities and cannot process news perfectly. Particularly, when InfLoad = q, then

the precision τε is highest (see Figure 2). (10) and (11) imply that the investors

give the highest weight to new information rather than the expected value of their

prior (ν̄). Thus, heterogeneity (ν̂A−ν̂B) reaches its maximum, inducing the highest

number of trades.

Third, when InfLoad → ∞, the precision of the extracted information is reduced

to zero (τε → 0). In this case, the investors are also homogenous in their posterior
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beliefs (i.e., ν̂A = ν̂B = ν̄) and again there is no trade and they hold M/2 asset

shares.

Figure 3 panel (b) illustrates the relationship between information load and the

expected price change. Asset returns decrease until they reach their lowest value

when InfLoad = q and increase thereafter. When the information load is equal

to the threshold, τ reaches its maximum value, and investors ask for the lowest

compensation to hold the asset (i.e., the investors’ risk premium Mθ/2τ is at its

lowest).

Figure 3: Information load, expected trading volume and expected price change

Panels (a) and (b) show the effect of information load (Infload) on expected trading volume and
expected price change, respectively. Specifically, we plot the results presented in Lemma 2 using
equations (26) and (28). We assume the following value for the parameters: q = 8, φ = 0.2,
τ0 = 1, M = 3000, and θ = 0.1.

3.2 Econometric model

To examine the predictive power of information load over future monthly market

returns, we rely on the following regression model:

rxmt+h = αh1 + αh2Xt + αh3SENTt + Controls+ εht+h, (29)

Xt = InfLoadt V InfOvert(τ) (30)

where rxmt+h is the cumulative market returns (scaled by the horizon h) in ex-

cess of the risk-free rate from t + 1 to t + h. Market returns are based on the

CRSP NYSE/AMEX/NASDAQ value-weighted portfolio in excess of the one-
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month Treasury bill rates and are obtained from Kenneth French’s online data

library.

We first examine the effects of information load on future market returns by in-

cluding InfLoadt (defined in (2)) as the main independent variable. Then, we

incorporate the possible nonlinear effects of information load on market dynam-

ics. In line with the predictions of our model, we expect such effects to be highly

dependent on how “excessive” the flow is. When the information flow is “mod-

erate,” increased news flows rather increase investor attention and the precision

of the information extracted from the news, leading to higher trading activity.

When the information load is “high,” however, it is more likely to put constraints

on investors’ processing capacity. Such an effect is likely to be more pronounced

when the information load is “excessive,” reducing the precision of the extracted

information. To capture these dynamics, we define InfOver t(τ) as the proportion

of days in month t, with InfLoadt higher than the threshold τ . We consider three

different thresholds with increasing extremity: historical mean, a one standard

deviation band, and a two standard deviations band, all calculated using the two-

week moving window sizes. The main findings are robust to choosing a different

moving window size as reported in Section 4.5.

We control for market sentiment (SENTt) as it has been shown to be a predictor

of stock market activity (Tetlock, 2007; Garcia, 2013, among others). We define

sentiment following Garcia (2013): For each day, we count the total number of

positive and negative words as well as the total number of words in the corre-

sponding lead paragraphs to obtain the proportion of positive and negative words.

We then find the difference between those proportions.

We also control for a set of variables (Controls) that are shown to be significant

predictors of market returns in traditional asset pricing studies. First, we consider

the S&P 500 monthly dividend yield (DYt) following Shiller (1978); Campbell

(1987); Fama and French (1988), among others. We obtain data from Global Fi-

nancial Data, Inc., GFDatabase (GFD). Second, we include the changes in the

consumption–wealth ratio (CAYt) of Lettau and Ludvigson (2001) to control for

the effects of business cycles on the aggregate variation in stock market returns.

The quarterly data are from Lettau’s website. Monthly estimates are then con-

structed by repeating the most recently available observation. Third, we include

volatility (RVOLAt), calculated as the standard deviation of stock market returns.
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We also consider the default spread (DSt), the term spread (TSt), and the change in

short-term interest rates (∆STIRt) following Keim and Stambaugh (1986); Camp-

bell (1987); Fama and French (1989). DSt is measured as the difference between

the Moody’s Seasoned BAA and AAA corporate bond yields and data are retrieved

from FRED, Federal Reserve Bank of St. Louis. TSt is calculated as the difference

between the 10-year Treasury bond and the 3-month T-bill yields, and ∆STIRt

is the changes in the 3-month T-bill rate. We obtain interest rate data from the

GFD. Finally, we include the Amihud’s (2002) illiquidity measure, ILLIQt using

price and volume data from CRSP.

Furthermore, we use the contemporaneous market trading volume, obtained from

GFD, as the dependent variable to see the effects of “excess” information on trading

volume.

In Table 2, we present summary statistics for all of the variables. Informa-

tion overload measures—where excess-news-flow days are identified using the his-

torical mean, one standard deviation band, and two standard deviations band,

respectively—are correlated positively with each other but not highly correlated

with the rest of the control variables. Thus, information overload is not likely to

share common information with standard predictors of stock market returns.

On average, the information load is above the historical mean of about 50% of the

days in a month, reaching a maximum of almost 75% of the days in a month.

The first and second-order autocorrelations for information overload measures

are negligible, as opposed to DYt, TSt, DSt, and CAYt, which present first- and

second-order autocorrelations of more than 0.9. The Phillip-Perron stationarity

test strongly rejects the null of the unit root for all of the variables except the

dividend yield (DYt).

4 Empirical findings

In this section, we present our main findings. We start by studying the in-sample

predictive power of information overload on stock market returns in a time-series

setting. Then, in Section 4.2, we examine the explanatory power of the informa-

tion overload index on future market returns in comparison to other text-based

measures. In Section 4.3, we examine the out-of-sample predictive ability of infor-
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mation overload. In Section 4.4, we present cross-sectional analysis, and finally,

Section 4.5 presents the robustness analyses.

4.1 Effects of information overload on stock markets: Time-

series analysis

Table 3 presents the estimated coefficients from (29) for the period spanning March

1952 to December 2018 for h = 1.13 First, we include InfLoad as the main inde-

pendent variable. Column I shows that information load is not statistically related

to stock market returns. This result is expected, given our model’s prediction that

the information load has a nonlinear relationship with stock market returns (see

Figure 3). Thus, we then incorporate such nonlinearity.

When the information load is right above the historical mean—InfOver(mean)—

increased news flows lead to higher trading volume and no significant effect on next

month’s market returns (Columns I and II). Increased trading volume is consistent

with the literature arguing that a higher flow of news encourages trading due to

increased attention (Barber and Odean, 2008), attracting more activity from high-

frequency traders (Foucault et al., 2016), or increased disagreement (Hong and

Stein, 2007).

“High” information load (one standard deviation above the historical mean)—

InfOver(1sd)—is associated with higher next-period returns (Column III). When

information load is “excessive” (two standard deviations above the mean)—InfOver(2sd)—

the predicting power of information overload over the next month’s returns be-

comes economically and statistically stronger (Column V). A one standard devi-

ation increase in information overload increases the market risk premium by 35

basis points. In addition, excessive information leads to lower trading volume,

consistent with reduced speculative demand due to the limited attention (see, for

example, Hou et al., 2009) (Column VI).

We then study the long-run predictive ability of information overload on cumula-

13The sample is restricted to post-1952 because of the data availability of the control variables.
Because that period coincides with the stock markets becoming a central investment vehicle for
the general public, we let the baseline specifications cover the post-1950s. That said, in Section
4.5 we restrict the control variables so that we can study the effects of information overload in
stock market returns in a longer historical sample and observe the sensitivity of our findings in
different time periods.

23



tive excess returns over the subsequent 24 months. We use Hodrick (1992) standard

errors to address the serial correlation in the residuals induced by overlapping ob-

servations. Table 4 shows that the predictive power of InfOver(2sd) over returns

is persistent. The economic effect is almost monotonically decreasing and vanishes

after 18 months. The proportion of the variance of cumulative market returns

(R2s) is high. However, as R2s are roughly proportional to the horizon under the

null hypothesis, they should be interpreted with caution (Boudoukh et al., 2008).

4.2 Predictive ability of InfOver and other text-based mea-

sures over returns

We test the explanatory power of “excessive” information load—InfOver(2sd)—on

future market returns in comparison to other text-based measures: SENT, EPU,

GPR, and NVIX. To this end, we run the baseline regressions by (1) considering

InfOver alone’ (2) using control variables (Controls) only, (3) including InfOver

along with the control variables, (4) including four news-based measures with

controls, and (5) considering InfOver, SENT, EPU, GPR, and NVIX together in

addition to the control variables.

Table 5 reports the estimated coefficients. InfOver(2sd) is a significant predictor

of market returns (Columns I, III, and IX). Within the news-based measures, only

the EPU index has statistically significant explanatory power (Columns IV–VII).

Furthermore, Column IX shows that the SENT, NVIX, and GPR indexes do not

have statistically significant explanatory power on market returns, with EPU being

only 10% significant. InfOver is still a significant predictor of market returns, sug-

gesting that our information load index contains additional explanatory power on

market returns beyond the other news-based measures proposed in the literature.

We then calculate the contribution of each regressor to the overall R2 (share of

explained variance) using Shapley values to judge the relative importance of the

variables in driving the changes in stock market returns. As expected, the stan-

dard predictors of returns (dividend yield, the consumptionwealth ratio, realized

volatility, default spread, term spread, changes in interest rates, and market liq-

uidity) together explain about half of the variation in stock market returns. Yet,

information overload alone explains about 12% of the variation, whereas the other

news-based measures (SENT, EPU, GPR, and NVIX) together explain 35% of the
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variation, with the contribution of EPU being the highest.

4.3 Out-of-sample forecasting performance

Next, we explore the out-of-sample predictive ability of “excess” information load

over one-month-ahead market returns by employing three forecasting exercises.

In the first exercise (Historical), we regress the excess returns on InfOver(2sd)

and compare the predicted value with the historical moving-average excess re-

turns. Second, in the Base exercise, we examine whether InfOver(2sd) has any

incremental predictive ability over the other regressors introduced in Section 3.2.

Accordingly, we compare the predicted value of excess market returns obtained

from (29), with a benchmark model that includes all variables but InfOver(2sd)

in the covariates.

Finally, in the third exercise (Lasso), we dynamically select control variables by

rolling the least absolute shrinkage and selection operator (LASSO) regressions of

Tibshirani (1996) and use this “best model” as the benchmark model. LASSO

regressions enable model selection (as it may set many coefficients to zero) and

coefficient shrinkage (as the non-zero coefficient estimates are smaller than their

OLS counterparts). We then compare the predicted values from the benchmark

model with the predicted value of the model that includes InfOver(2sd) in addition

to the selected covariates.

For each of the three exercises, we use 540 observations (45 years) as a training

period, corresponding to about two-thirds of the overall sample size, and run

monthly rolling regressions to calculate recursively the error terms over a testing

window.

We then evaluate the out-of-sample forecasting ability of information overload by

comparing the out-of-sample R2s and the differences in the mean absolute errors

(MAE) of target and benchmark models for each of the three exercises: Historical,

Base, and Lasso. We test the statistical differences in MAE by employing the

Diebold and Mariano (1995) test. Following Campbell and Thompson (2008) and

Welch and Goyal (2008), we calculate the out-of-sample R2 as:

R2
out = 1−

∑Ttest−h
t=1 ε2target,t+h∑Ttest−h
t=1 ε2bench,t+h

, (31)
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where εtarget,t+h and εbench,t+h are the forecast errors of the target and benchmark

models of Historical, Base, and Lasso; Ttest is the testing window; and h = 1. A

positive out-of-sample R2 indicates that the predictive regression displays a lower

average mean squared error than that of the benchmark model so that InfOver

provides a relatively more accurate forecast.

Table 6 presents the results. Overall, information overload exhibits better out-

of-sample performance than either the historical average market excess returns

or other predictors. InfOver delivers positive out-of-sample R2s and increases

the forecast accuracy with significant differences in MAE in all of the three ex-

ercises. It beats the historical mean, which is a strong result because Welch and

Goyal (2008) show that historical average returns have better forecasting power

for market excess returns than many “popular” predictors. Second, InfOver has

out-of-sample predictive ability over other predictors of market returns such as

market sentiment, dividend yields, and consumption-over-wealth ratio. Including

our index in the model increases the forecasting accuracy by about 1%. Finally,

InfOver has incremental predictive ability even over the “best model”. Note that

the benchmark model in Lasso includes variables only with known forecasting

power a priori, thus increasing the bar for our index to add any forecasting power

(see, for example, Calomiris and Mamaysky, 2019, for an application).

4.4 Effects of information overload on stock markets: Cross-

sectional analysis

So far we have provided evidence for the significant predictive power of information

overload on stock market returns. We further hypothesize that such predictabil-

ity is not necessarily uniform and that information overload has cross-sectional

effects. As investors are cognitively constrained, it would be optimal for them

to allocate processing capacity to only a certain group of stocks, such as larger

stocks or less risky “bond-like” stocks—the so-called “category learning” model of

Peng and Xiong (2006). Thus, we expect information overload to exacerbate price

(under)reaction for stocks that require a higher level of attention as it aggravates

investors’ capacity constraints.

Moreover, there is a body of literature that shows that small, unprofitable, high

beta stocks are more difficult to arbitrage. For instance, Asquith et al. (2005)
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show that small-cap stocks are more likely to be short-sale constrained. Similarly,

in Hong and Sraer’s (2016) model, high beta stocks are more likely to experience

binding short-sale constraints, and thus the negative effects of investor disagree-

ment on future stock returns are concentrated among the high beta stocks. Hence,

we test whether the stocks with weaker arbitrage forces are more underpriced and

experience higher future returns in periods of information overload, as a plethora

of information would make them even more difficult to value amid increased esti-

mation and information risk.

To this end, we form four value-weighted portfolios, where the long leg contains

stocks with high values of size, beta, variance, and operating profit. High and low

values are based on the 20% top and 20% bottom percentiles of the corresponding

firm characteristic, respectively. We obtain data from the Kenneth French data

library.

Table 7 reports the estimated coefficients from (29) with the long-short portfolio

returns as the dependent variables and InfOver(2sd) as the main independent

variable. We examine different specifications, including the Carhart (1997) four-

factor model, the Fama-French five-factor model (Fama and French, 2015), and

the predictors introduced in Section 3.2.

Column I shows that small stocks have a significantly higher return compared to

big stocks following periods of excessive information. For the variance and beta

portfolios (Columns II and III), the coefficient of information overload is positive

and significant, such that highly volatile and high beta stocks have a higher return

than the less volatile and low beta ones. Finally, stocks with low operating profits

will have a higher return the next month, compared with stocks with high operating

profits (Column IV).

Irrespective of the control variables considered, we find that investors require

higher risk premium to hold small, high beta, highly volatile, and unprofitable

stocks. A one standard deviation increase in information overload translates into

45 bps higher future returns for small stocks than big ones, 89 bps higher future

returns for more volatile stocks, 76 bps higher future returns for high beta stocks,

and 48 bps higher future returns for unprofitable stocks than profitable ones.
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4.5 Robustness

To test the sensitivity of our findings, we run several robustness tests. First,

instead of calculating information load by calculating the average of quantity and

inconsistency components as introduced in (2), we calculate it by employing a

principal component analysis and include the two components separately. Second,

while identifying the excessive-flow days, we calculate the threshold using two

months of historical data, instead of two weeks.

Third, Garcia (2013) finds that investors’ sensitivity to news is most pronounced

when they are going through hard times. To test whether our results are driven

only by the recession periods, we control for the NBER recessions.

Fourth, instead of calculating stock market volatility using the standard deviation

of returns in (29), we calculate it using a GARCH(1,1) model.

Table 8 (Columns I to VII) presents the results. We conclude that our findings are

robust to the specifications we consider and that information overload is a signifi-

cant predictor of stock market excess returns. Although using the average quantity

and consistency of news together predicts returns, considering these components

separately does not have any predictive power.

Furthermore, we investigate the effects of information overload during different

time periods. We have the information overload index from January 1885. How-

ever, stock market index data begin in July 1926, and in the baseline specifications

we cover the period from March 1952 to December 2018 due to the availability

of the control variables. In this subperiod robustness analysis, we keep only the

variables with available data so that we can examine the predictive power of in-

formation overload on market excess returns in a historical setting. Specifically,

we consider five subperiods: the early period (1926–1945), post-World War II

(post-1946), and post-1960, 1980, and 1990.

Column VIII shows that, in the early period, news flows do not affect stock market

returns. This result is not surprising, given that stock markets were available only

to the wealthiest investors and they become a common investment alternative only

after the second world war. The main results are robust and qualitatively similar

starting after the WWII period (Columns IX through XI). Indeed, the economic

effect gets stronger over time until the 1990s. Post-1990s (Column XIIs), the

predictive power of information overload on stock market returns gets weaker in
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statistical terms, but the economic effect is still meaningful. This finding is in line

with the introduction of other news outlets and the massive use of social media

and the internet during that period.

5 Conclusion

We construct a news-based historical information load index by considering over 2

million articles printed in The New York Times from January 1, 1885 to December

31, 2018. We use these novel data to study the effects of information load on stock

market dynamics.

We start by verifying that our index accurately measures the load of information

investors face. It captures expected changes in the information flow throughout

the sample period, and it is significantly correlated with various proxies of investor

attention, asymmetric information, indicators of financial uncertainty, and stress,

including the news-based EPU, GPR, and NVIX.

We then show that the effects of information load on stock market dynamics are

nonlinear. Moderate information flow increases the decision accuracy and attention

of the investor and boosts trading volume, but it does not affect returns. Excessive

news-flow periods are followed by higher market returns, as information overload

puts constraints on investors’ processing capacity. We argue that such results are

consistent with information overload increasing information and estimation risk

and deteriorating investors’ decision accuracy because of their limited attention.

The effects of information overload on market returns are economically meaningful

and long-lasting. Moreover, our information load index is useful in improving out-

of-sample forecasts has cross-sectional predictive power over market returns.

Overall, in this paper, we provide supporting evidence on the significant role of

media in stock markets. In addition to the extant literature, we show that the

excess flow of information predicts stock market returns. Our findings challenge

traditional asset pricing theories by noting that the flow of information affects

investment decisions, plays a role in the time-series and cross-section of returns,

and thus prices cannot always incorporate all information instantly.
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Appendix

Proof of Lemma 1. The proof follows the standard Bayesian updating process of
variables that are normally distributed with known precision (or equivalently, with
known variance). See, e.g., Peng and Xiong (2006).

Proof of Proposition 1. The proof follows from obtaining the first-order condition
of (20). For example, in the case of investor A:

max
yi

Et[
(
νA|InfA − p

)
yA]− θ

2
V ar[

(
νA|InfA − p

)
yA],

with first-order condition (
ν̂A − p

)
− θ

τ
yA = 0,

then

yA =
(
ν̂A − p

) τ
θ
.

Thus, in the case of investor B:

yB =
(
ν̂B − p

) τ
θ
.

By using the market clearing condition:

yA + yB = M,

or (
ν̂A − p

) τ
θ

+
(
ν̂B − p

) τ
θ

= M,

which means

p =
ν̂A + ν̂B

2
− Mθ

2τ
.

In the case of asset holdings of agent A:

yA =

(
ν̂A −

(
ν̂A + ν̂B

2
− Mθ

2τ

))
τ

θ
,
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or equivalently

yA =
M

2
+

τ

2θ

(
ν̂A − ν̂B

)
.

In the same way, we can obtain asset holdings of agent B:

yB =
M

2
+

τ

2θ

(
ν̂B − ν̂A

)
.

Q.E.D.

Proof of Lemma 2.Proof for the expected trading volume follows by using the mean
of |εA−εB|, which is a random variable distributed from a half-normal distribution
with variance 2/τε. The mean of a half-normal distribution is σ

√
2/π; then the

mean of |εA − εB| is
√

2/τε
√

2/π = 2
√

1/(τεπ). Consequently, the expected

trading volume is: τε/(2θ)(2
√

1/(τεπ)) = (1/θ)
√
τε/π. Proof for the expected

price change follows from substituting the asset prices at t = 0 and t = 1 inside
the expectation operator in equation (28). Q.E.D.
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Table 1: Pearson correlation coefficients
In this table, we present contemporaneous Pearson correlation coefficients (ρ) of the quantity
of information (Q), the tone dispersion (INC), and the information load index (InfLoad), with
proxies of investor attention, asymmetric information, investor uncertainty, financial uncertainty,
and finally, news-based measures at a monthly frequency. Q, INC, and InfLoad are all introduced
in Section 2.1. In row 1, we use the excess search frequency in Google (Search Volume Index)
as a proxy of investor attention (ASVI) (Da et al., 2011; Akarsu and Süer, 2021). ASVI is the
difference between cross-sectional and time series monthly averages of 579 U.S. firms’ SVIs and
the last quarter’s SVIs. In row 2, we include the market excess correlation (CORR), obtained
as the average monthly correlation of the Fama-French 25 equally-weighted portfolios formed on
size and book-to-market in excess of its past 24 months average. In rows 3 and 4, we include the
bid-ask spread (SPR) and the distance between the highest ask and lowest bid prices (DIST),
respectively. We then include the market volatility (VOLA) in row 5, as the standard deviation
of daily CRSP NYSE/AMEX/NASDAQ value-weighted portfolio returns for a given month. In
rows 6 and 7, we consider measures of the analysts estimates dispersion using the Institutional
Brokers’ Estimate System (Refinitiv, IBES North American Summary & Detail Estimates, Level
2, Current & History Data, Adjusted and Unadjusted) summary database. We calculate the
standard deviation of the analysts’ earnings-per-share (EPS) forecasts for a given stock and time
period (DISP1), and the average value of the absolute deviation of the highest EPS forecast
from the actual value and the lowest EPS forecast from the actual value (DISP2). We include
in rows 8 to 11, the CBOE Volatility Index (VIX) index, the uncertainty measure (BEX) of
Bekaert et al. (2019), the Federal Reserve Banks of St. Louis index (FSTR1), and the Chicago
financial stress index (FSTR2), respectively. Finally, we compare the InfLoad index with other
news-based measures: the Economic Policy Uncertainty index (EPU) of Baker et al. (2016), the
Geopolitical Risk Index (GPR) of Caldara and Iacoviello (2018), and News-implied volatility
index (NVIX) of Manela and Moreira (2017), in rows 12 to 14, respectively. ∗∗∗, ∗∗ and ∗ denote
1%, 5%, and 10% of significance level.

I II III
ρQ ρINC ρInfLoad

1 ASVI -0.053 -0.345∗∗∗ -0.265∗∗

2 CORR 0.061∗∗ 0.082∗∗∗ 0.082∗∗∗

3 SPR 0.589∗∗∗ 0.306∗∗∗ 0.612∗∗∗

4 DIST 0.240∗∗∗ 0.404∗∗∗ 0.420∗∗∗

5 VOLA 0.196∗∗∗ 0.211∗∗∗ 0.240∗∗∗

6 DISP1 0.041 0.310∗∗∗ 0.240∗∗∗

7 DISP2 0.045 0.168∗∗∗ 0.150∗∗∗

8 VIX 0.203∗∗∗ 0.368∗∗∗ 0.411∗∗∗

9 BEX -0.050 0.546∗∗∗ 0.320∗∗∗

10 FSTR1 0.352∗∗∗ 0.397∗∗∗ 0.479∗∗∗

11 FSTR2 0.371∗∗∗ 0.176∗∗∗ 0.439∗∗∗

12 EPU 0.017 0.399∗∗∗ 0.296∗∗∗

13 GPR 0.047∗ 0.021 0.049∗

14 NVIX 0.046 0.346∗∗∗ 0.197∗∗∗
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Table 2: Summary statistics
This table reports the mean, minimum, maximum, standard deviation, the first and second autocorrelation, and the p−values corresponding
to the Philips-Perron stationarity test results of the variables included in our analysis. The last three rows report the correlation of the series
indicated at the column header with the information overload measures. InfOver t(mean), InfOver t(1sd), InfOver t(2sd) are the information
overload measures introduced in Section 3.2. Monthly excess market returns, rxmt are the CRSP NYSE/AMEX/NASDAQ value-weighted
portfolio returns in excess of the one-month treasury bill rate. SENTt is the market sentiment measure, calculated as the difference
between the proportion of positive and negative words, following Garcia (2013). DYt is the S&P 500 monthly dividend yield, ∆STIRt is
the change in three-month T-bill rates, TSt is the term spread, calculated as the difference between the ten-year Treasury bond and the
three-month Treasury bill yields. Default spread, DSt, is measured as the difference between BAA and AAA corporate bond spreads, CAYt

is the consumption–wealth ratio of Lettau and Ludvigson (2001) and obtained by using the most recently available quarterly observations,
RVOLAt is realized volatility and calculated as the standard deviation of market stock returns. Finally, ILLIQt is the Amihud’s illiquidity
measure. All of the variables are monthly estimates from March 1952 to December 2018. Data sources: ProQuest, TDM Studio. New York
Times Historical Newspapers, Global Financial Data, Inc., GFDatabase, FRED, the Federal Reserve Bank of St Louis, Kenneth French’s
online data library.

I II III IV V VI VII VIII IX X XI XII

rxmt InfOver t InfOver t InfOver t SENTt DYt ∆STIRt TSt DSt CAYt RVOLAt ILLIQt

(mean) (1sd) (2sd)

mean 0.612 0.488 0.153 0.027 -0.402 3.117 0.001 1.642 0.964 0.05 0.798 5.241

min -23.24 0.25 0.00 0.00 -1.063 1.08 -3.85 -2.4 0.32 -4.945 0.174 0.321

max 16.1 0.742 0.355 0.133 -0.126 6.4 2.4 4.42 3.38 3.801 4.991 59.129

st. Dev. 4.247 0.08 0.057 0.027 0.125 1.2 0.442 1.361 0.434 1.876 0.488 5.741

AC1 0.077 -0.085 -0.257 -0.052 0.744 0.992 0.128 0.959 0.971 0.973 0.675 0.822

AC2 -0.023 0.053 -0.138 0.065 0.696 0.984 -0.024 0.914 0.927 0.946 0.546 0.749

PP–stationarity 0.01 0.01 0.01 0.01 0.01 0.208 0.01 0.01 0.01 0.03 0.01 0.01

ρ(InfOver(mean),i) -0.103 1.00 0.326 -0.06 -0.057 0.056 -0.017 -0.037 0.099 -0.09 0.064 0.027

ρ(InfOver(1sd),i) -0.107 0.326 1.00 0.219 -0.019 -0.012 -0.036 0.064 0.065 0.022 0.09 0.047

ρ(InfOver(2sd),i) -0.028 -0.06 0.219 1.00 0.034 -0.064 -0.026 0.029 -0.142 0.065 0.013 -0.052
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Table 3: Information overload and market excess returns
In this table, we report the estimated coefficients of the time-series regressions introduced in
(29) for h = 1. Volume is the S&P 500 trading volume, demeaned and log-transformed. The
rest of the variables are described in Table 2. Columns I and II presents the results when the
main independent variable is information load and the rest of the columns when it is information
overload. In columns III and IV, information overload considers the days when the information
load index is above the historical mean. In columns V and VI, we use a one-standard-deviation
band, and in columns VII and VIII, we use two-standard-deviation bands. All of the variables
are in monthly frequency from March 1952 to December 2018, where available and standardized
to ease the interpretation of the coefficients. Newey-West standard errors are reported. ***, **,
and * denote significance at the 1%, 5%, and 10% level (two-sided), respectively. Data sources:
ProQuest, TDM Studio. New York Times Historical Newspapers, Global Financial Data, Inc.,
GFDatabase, the Federal Reserve Bank of St Louis, Kenneth French’s online data library.

I II III IV V VI VII VIII

Dep. var. rxmt+1 volume rxmt+1 volume rxmt+1 volume rxmt+1 volume

InfLoad t InfOver t(mean) InfOver t(1sd) InfOver t(2sd)

InfLoad/Over t 0.03 -0.83*** -0.19 0.10** 0.30** 0.05 0.35*** -0.11***

(0.199) (0.099) (0.147) (0.041) (0.150) (0.035) (0.132) (0.043)

SENTt -0.24 -0.14* -0.23 -0.01 -0.25 -0.00 -0.23 -0.00

(0.201) (0.079) (0.201) (0.090) (0.200) (0.091) (0.201) (0.090)

DYt 0.23 -1.63*** 0.26 -2.15*** 0.25 -2.14*** 0.24 -2.14***

(0.241) (0.124) (0.208) (0.103) (0.210) (0.103) (0.208) (0.103)

∆STIRt -0.40* 0.11** -0.40* 0.11* -0.39 0.10* -0.39 0.10*

(0.237) (0.053) (0.235) (0.055) (0.237) (0.054) (0.237) (0.053)

TSt 0.31* 0.23*** 0.30* 0.38*** 0.30* 0.38*** 0.28* 0.38***

(0.174) (0.074) (0.164) (0.073) (0.165) (0.073) (0.165) (0.073)

DSt 0.10 0.79*** 0.10 0.93*** 0.08 0.93*** 0.16 0.91***

(0.234) (0.079) (0.232) (0.088) (0.229) (0.088) (0.232) (0.089)

CAYt 0.37* 0.38*** 0.35* 0.36*** 0.37** 0.35*** 0.36* 0.35***

(0.189) (0.068) (0.189) (0.083) (0.189) (0.083) (0.189) (0.083)

RVOLAt -0.53** 0.20*** -0.51** 0.09 -0.55** 0.09 -0.55** 0.10

(0.248) (0.067) (0.249) (0.075) (0.250) (0.075) (0.254) (0.075)

ILLIQt 0.17 0.18 0.17 0.19

(0.169 (0.170) (0.171) (0.168)

Adj. R2 (%) 3.22 73.15 2.74 73.10 3.07 72.97 3.22 73.15

N Obs. 792 790 792 790 792 790 792 790
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Table 4: Long-run effects of information overload on market excess returns
In this table, we report the estimated coefficients of the time-series regressions introduced in (29) for h = 1, 2, ...., 24. InfOver t(2sd) is
the information overload measure introduced in Section 3.2, where it considers the days when the information load index is above its
historical two-standard-deviation bands. The rest of the variables are described in Table 2. Information overload is standardized to ease the
interpretation of the coefficients. All of the variables are monthly frequency from March 1952 to December 2018. We report Hodrick (1992)
standard errors to address overlapping observations, which induces serial correlation in the residuals. ***, **, and * denote significance at
the 1%, 5%, and 10% level (two-sided), respectively. Data sources: ProQuest, TDM Studio. New York Times Historical Newspapers, Global
Financial Data, Inc., GFDatabase, the Federal Reserve Bank of St Louis, Kenneth French’s online data library.

horizon (h) 1 2 3 4 5 6 7 8 9 10 11 12

InfOver t(2sd) 0.347** 0.199** 0.241*** 0.276*** 0.232*** 0.202*** 0.194*** 0.183*** 0.148*** 0.130** 0.115** 0.128***

(0.132) (0.099) (0.084) (0.076) (0.071) (0.067) (0.064) (0.060) (0.058) (0.058) (0.054) (0.051)

Adj. R2 (%) 3.22 3.53 5.36 7.53 8.99 10.35 12.31 14.30 15.85 17.58 19.30 20.67

N Obs. 792 791 790 789 788 787 786 785 784 783 782 781

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

horizon (h) 13 14 15 16 17 18 19 20 21 22 23 24

InfOver t 0.117** 0.10** 0.101** 0.095** 0.101** 0.094** 0.083* 0.083* 0.066 0.062 0.061 0.059

(0.051) (0.051) (0.050) (0.049) (0.047) (0.045) (0.044) (0.043) (0.041) (0.042) (0.041) (0.041)

Adj. R2 (%) 21.93 23.09 23.91 25.53 26.92 27.96 29.02 30.41 31.37 32.16 33.20 34.12

N Obs. 780 779 778 777 776 775 774 773 772 771 770 769

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table 5: Predictive ability of InfOver and other text-based measures
In this table, we examine the explanatory power of information overload on future market returns
in comparison to other text-based measures. We run the time-series regressions introduced in
(29) for h = 1, of market excess returns on InfOver t(2sd). SENT is the market sentiment via
Garcia (2013), EPU is the Economic Policy Uncertainty index of Baker et al. (2016), GPR is
the Geopolitical Risk Index of Caldara and Iacoviello (2018), and NVIX is the News-implied
Volatility Index of Manela and Moreira (2017). All of the other variables are introduced in
Table 2. All of the variables are in monthly frequency from March 1952 to December 2018,
where available and standardized to ease the interpretation of the coefficients. Newey-West
standard errors are reported. ***, **, and * denote significance at the 1%, 5%, and 10% level
(two-sided), respectively. Data sources: ProQuest, TDM Studio. New York Times Historical
Newspapers, Global Financial Data, Inc., GFDatabase, the Federal Reserve Bank of St Louis,
Kenneth French’s online data library.

I II III IV V VI VII VIII IX

InfOver t(2sd) 0.32** 0.36*** 0.39**

(0.131) (0.131) (0.193)

SENTt -0.25 -0.10 -0.08

(0.207) (0.409) (0.403)

EPUt 0.73** 0.57* 0.59*

(0.306) (0.346) (0.344)

GPRt 0.17 0.24 0.21

(0.178) (0.233) (0.240)

NVIXt 0.27 0.23 0.25

(0.205) (0.289) (0.290)

DYt 0.23 0.22 0.22 -0.10 0.19 0.27 0.03 0.03

(0.177) (0.175) (0.178) (0.529) (0.178) (0.180) (0.602) (0.599)

∆STIRt -0.42* -0.42* -0.41* 0.29 -0.42* -0.42* 0.41 0.38

(0.246) (0.245) (0.247) (0.487) (0.247) (0.247) (0.512) (0.512)

TSt 0.31* 0.28 0.32* -0.25 0.29* 0.26 -0.33 -0.36

(0.174) (0.174) (0.171) (0.273) (0.173) (0.177) (0.306) (0.308)

DSt 0.11 0.18 0.09 -0.14 0.11 0.13 -0.24 -0.14

(0.233) (0.235) (0.234) (0.466) (0.235) (0.238) (0.541) (0.530)

CAYt 0.26 0.25 0.37* 0.23 0.27 0.30* 0.26 0.27

(0.165) (0.164) (0.190) (0.257) (0.166) (0.171) (0.352) (0.349)

RVOLAt -0.43 -0.46* -0.53** -0.57** -0.42 -0.55** -0.63** -0.71**

(0.264) (0.265) (0.255) (0.285) (0.263) (0.272) (0.291) (0.294)

ILLIQt 0.21 0.23 0.18 0.34 0.22 0.19 0.28 0.27

(0.176) (0.173) (0.177) (0.229) (0.175) (0.173) (0.237) (0.232)

Adj. R2 (%) 0.44 2.61 3.17 2.67 1.97 2.63 2.82 1.42 1.97

N Obs. 800 792 792 792 407 792 759 374 374
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Table 6: Out-of-Sample Predictive Ability
The table reports the results of three exercises to assess the out-of-sample performance of infor-
mation overload over one-month-ahead forecasts of market excess returns. In the first exercise,
Historical, we regress the excess returns on InfOver(2sd) and compare the predicted value with
the historical moving-average excess returns. In the second exercise, Base, we compare the pre-
dicted value of excess market returns obtained from estimating (29) with a benchmark model
that includes all controls but InfOver(2sd) in the covariates. Finally, in the third exercise Lasso,
the benchmark model is the “best model” obtained by dynamically selecting control variables
via rolling LASSO regressions. The training period is 45 years. We report the out-of-sample R2

defined in (31) and the difference in mean absolute errors (∆MAE). We test the statistical differ-
ences by employing the Diebold and Mariano (1995) test and report the corresponding p-value.
***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

Exercise type N obs. out-of-sample R2 (%) ∆MAE p-value

Historical 795 1.05 0.043** 0.0143
Base 795 1.29 0.055*** 0.0053
Lasso 795 1.02 0.043** 0.0293
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Table 7: Effects of information overload on cross-section of returns
In this table, we test the effects of information overload over the cross-section of returns. In
Columns I through IV, the dependent variables are returns of portfolios formed by the big minus
small stocks, high variance minus low variance stocks, high beta minus low beta stocks, and high
operating profit minus low operating profit stocks, respectively. InfOver t(2sd) is the information
overload measure introduced in Section 3.2, where it considers the days when the information load
index is above the historical two-standard-deviation bands. SENT+Controls are the covariates
of model (29). Carhart-4 is factor model of Carhart (1997). FF-5 is the Fama-French 5 factors
of Fama and French (2015). The Fama-French factors are constructed using the 6 value-weight
portfolios formed on size and book-to-market, the 6 value-weight portfolios formed on size and
operating profitability, and the 6 value-weight portfolios formed on size and investment. The
momentum factor uses six value-weight portfolios formed on size and prior (2-12) returns. All
of the variables are in monthly frequency from March 1952 to December 2018. Newey-West
standard errors are reported. ***, **, and * denote significance at the 1%, 5%, and 10% level
(two-sided), respectively. Data sources: ProQuest, TDM Studio. New York Times Historical
Newspapers, Global Financial Data, Inc., GFDatabase, FRED, the Federal Reserve Bank of St
Louis, Kenneth French’s online data library.

I II III IV
Portfolio type size variance beta op. profit

Panel A
InfOver t(2sd) -0.45** 0.89*** 0.76*** -0.48***

(0.183) (0.277) (0.234) (0.134)

Adj. R2 (%) 0.59 1.95 2.44 2.15
N Obs. 792 657 648 657
SENT+Controls Yes Yes Yes Yes
Carhart-4 No No No No
FF-5 No No No No
Panel B
InfOver t(2sd) -0.39** 0.90*** 0.70*** -0.43***

(0.163) (0.264) (0.220) (0.133)

Adj. R2 (%) 7.27 3.54 3.14 1.76
N Obs. 872 663 654 663
SENT+Controls No No No No
Carhart-4 Yes Yes Yes Yes
FF-5 No No No No
Panel C
InfOver t(2sd) -0.54** 0.90*** 0.70*** -0.42***

(0.211) (0.265) (0.222) (0.129)

Adj. R2 (%) 7.88 3.90 3.29 3.79
N Obs. 662 662 654 662
SENT+Controls No No No No
Carhart-4 No No No No
FF-5 Yes Yes Yes Yes
Panel D
InfOver t(2sd) -0.54** 0.90*** 0.70*** -0.42***

(0.212) (0.264) (0.221) (0.129)

Adj. R2 (%) 7.83 3.75 3.15 3.67
N Obs. 662 662 654 662
SENT+Controls Yes Yes Yes Yes
Carhart-4 Yes Yes Yes Yes
FF-5 Yes Yes Yes Yes
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Table 8: Robustness
In this table, we present the results of the robustness analysis. Column I reports the baseline specification. In Column II, we calculate
information load via principal component analysis instead of taking the average of quantity and inconsistency components. In Columns
III and IV, we report the results when we include the quantity and inconsistency components separately. In Column V, we calculate the
threshold using two months of historical data, instead of two weeks. In Column VI we include the NBER recession dates in the control set. In
Column VII, instead of calculating volatility as the standard deviation of daily market returns, we employ the GARCH(1,1) model. Finally,
in Columns VIII–XII, we repeat the baseline specification using data for the early period (1926–1945), from 1946, from 1960, from 1980, and
from 1990, respectively. InfOver t(2sd) is the information overload measure introduced in Section 3.2, where it considers the days when the
information load index is above the historical two-standard-deviation bands. The rest of the variables are described in Table 2. All of the
explanatory variables are standardized to ease the interpretation of the coefficients. All of the variables are in monthly frequency from March
1952 to December 2018, except for the specifications in columns VIII–XII. Newey-West standard errors are reported. ***, **, and * denote
significance at the 1%, 5%, and 10% level (two-sided), respectively. Data sources: ProQuest, TDM Studio. New York Times Historical
Newspapers, Global Financial Data, Inc., GFDatabase, the Federal Reserve Bank of St Louis, Kenneth French’s online data library.

I II III IV V VI VII VIII IX X XI XII
Specification: baseline pca Q INC 2months NBER GARCH 1926–1945 Post–1946 Post–1960 Post–1980 Post–1990

InfOver t(2sd) 0.35*** 0.35*** 0.24 0.14 0.34** 0.35*** 0.32** -0.07 0.32** 0.39*** 0.38** 0.34*
(0.132) (0.131) (0.166) (0.152) (0.133) (0.132) (0.135) (0.525) (0.127) (0.144) (0.177) (0.191)

SENTt -0.24 -0.24 -0.26 -0.24 -0.28 -0.31 0.06 1.54* -0.04 -0.07 -0.21 -0.23
(0.205) (0.205) (0.207) (0.205) (0.206) (0.201) (0.255) (0.876) (0.179) (0.201) (0.319) (0.394)

DYt 0.23 0.23 0.28 0.23 0.20 0.35* 0.42** -0.35 0.34** 0.10 0.13 -0.05
(0.197) (0.197) (0.204) (0.197) (0.199) (0.206) (0.190) (1.177) (0.136) (0.235) (0.395) (0.475)

∆STIRt -0.40 -0.40 -0.39 -0.41* -0.38 -0.46* -0.38 1.64 -0.39* -0.45* -0.14 0.03
(0.243) (0.243) (0.243) (0.242) (0.239) (0.242) (0.243) (1.300) (0.233) (0.269) (0.275) (0.282)

TSt 0.29* 0.29* 0.31* 0.31* 0.30* 0.25 0.32* -0.08 0.33** 0.28 0.14 -0.05
(0.169) (0.169) (0.169) (0.169) (0.169) (0.169) (0.170) (0.892) (0.163) (0.186) (0.215) (0.249)

DSt 0.16 0.16 0.10 0.10 0.10 0.22 -0.17 -0.91 0.08 0.21 0.06 -0.09
(0.235) (0.235) (0.232) (0.233) (0.232) (0.236) (0.246) (1.343) (0.207) (0.276) (0.452) (0.503)

CAYt 0.36* 0.36* 0.34* 0.37** 0.36* 0.36* 0.16
(0.189) (0.189) (0.188) (0.189) (0.190) (0.187) (0.213)

RVOLAt -0.56** -0.56** -0.56** -0.53** -0.58** -0.49* 0.25 0.33 -0.36 -0.54* -0.66** -0.61
(0.256) (0.256) (0.253) (0.253) (0.256) (0.265) (0.224) (0.835) (0.244) (0.285) (0.335) (0.430)

ILLIQt 0.20 0.20 0.17 0.18 0.17 0.22 0.11 1.53 0.25 0.34* 0.39* 0.60
(0.172) (0.172) (0.177) (0.175) (0.172) (0.172) (0.177) (1.115) (0.162) (0.184) (0.226) (0.398)

NBERt -1.16*
(0.607)

Adj. R2 (%) 3.22 3.21 2.86 2.66 3.19 3.79 2.35 4.44 2.67 2.87 1.35 0.9
N Obs. 792 792 792 792 792 792 785 228 865 697 462 346
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