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Sectoral impact and propagation of weather shocks

Guglielmo Zappalà∗

Abstract

Local weather shocks have been shown to affect local economic output, how-

ever, little is known about their propagation through production networks. Using a

six-sector global dataset over the past fifty years, this paper examines the effect of

weather fluctuations and extreme weather events on sectoral economic production

and the transmission of weather shocks across sectors, countries and over time. I

document that agriculture is the most harmed sector by heat shocks, droughts and

cyclones. Using input-output interlinkages, I find that sectors at later stages of the

supply chain suffer from substantial and persistent losses over time due to domestic

and foreign heat shocks in other sectors. A counterfactual analysis of the average

annual output loss accounting for heat shocks across trade partners shows a sub-

stantial underestimation of the economic cost of temperature increases since 2000.
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1 Introduction

There is a large and urgent demand for data-driven estimates of climate damages by

policymakers to properly account for the benefits and costs of additional climate change

mitigation efforts (Newell et al., 2021). A growing interest in understanding the nexus

between climatic conditions and economic outcomes has led to a plethora of studies that

analyze this relationship (see Kolstad and Moore (2020) for a recent review). Despite

recent advancements employing panel econometric methods to estimate the response of

economic outcomes to weather fluctuations (Auffhammer, 2018; Hsiang, 2016), previous

articles focus on the responses of local aggregate measures of economic activity to local

shocks. The potential transmission of non-local weather shocks within sectoral production

networks has so far received little attention and can provide a more accurate quantification

of climate damages.

This paper uses cross-country sector-level data combined with weather information

and input-output interlinkages to examine how weather shocks heterogeneously affect

sectoral production across the world and then traces the propagation of such shocks in

production networks through the economy, across countries and over time. Production

data come from the United Nations Statistics Division (UNSD, 2022), which contains

information on gross value added for six sectors1, across 184 countries from 1970 through

2020. To identify sector-specific weather shocks, I exploit plausibly exogenous variations

in temperature, precipitation, dryness conditions and wind speed, aggregating grid-cell

weather information at the country level using the grid-cell fraction of cropped area for

the agricultural sector and population for the other sectors.

In line with previous findings (Acevedo et al., 2020; Dell et al., 2012), I document

that agriculture is the most harmed sector by various weather shocks. In particular, us-

ing a measure of abnormal weather realizations with respect to the country-specific daily

distribution, I find that an additional day above the 95th percentile of the daily temper-

ature distribution reduces agricultural growth rate by 11% of its sample mean. Using a

measure of dryness from the Standardized Precipitation Evapotranspiration Index (SPEI)

1Agriculture, hunting, forestry, and fishing; Mining, manufacturing and utilities; Construction; Whole-
sale, retail trade, restaurants, and hotels; Transport, storage, and communication; Other activities.
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(Vicente-Serrano et al., 2010), I document a negative and substantial effect of droughts

and dryness conditions on agricultural production. Conversely, drier conditions marginally

benefit production in the construction and in the transport, storage and communication

sectors, in which tasks in outdoor “interface” areas (Cachon et al., 2012) are sensitive

to abundance in precipitation. Lastly, using a measure of wind speed by Kunze (2021),

I document that tropical cyclones harm not only agriculture, but also have destructive

power in the other activities sector, comprising government and financial sector.

Sectoral output can incur losses from climate change through different channels (Car-

leton & Hsiang, 2016). For instance, weather is an input in crop production and can di-

rectly harm agriculture (Acevedo et al., 2020; Hultgren et al., 2022; Schlenker & Roberts,

2009). Other sectors can experience losses due to reductions in labor supply and produc-

tivity (Graff Zivin et al., 2018; Graff Zivin & Neidell, 2014; Rode et al., 2022), total factor

productivity (Letta & Tol, 2019; Zhang et al., 2018), or damages to assets and infrastruc-

ture (Bakkensen & Barrage, 2018; Fankhauser & Tol, 2005; Hsiang & Jina, 2014). In the

second part of the paper, I investigate whether sectors suffer indirectly from shocks on

trade partners due to the transmission of weather shocks happening elsewhere. I trace the

propagation of shocks in production networks using sectoral interlinkages from EORA26

(Kanemoto et al., 2011; Lenzen et al., 2012) and consider shocks originating in upstream

and downstream sectors, both domestic and foreign.

Using abnormally hot temperatures, I document that domestic shocks, accounting for

weather shocks within the same country weighted by the relative importance of intersec-

toral linkages, have a strong negative effect on several sectors’ output, notably construc-

tion; transport, storage and communication; wholesale, retail trade, restaurants and hotel.

The magnitude of the effect is substantial and comparable to the effect of weather shocks

on agricultural production. Using local projections (Jordà, 2005), I find that the effect

of domestic shocks is persistent over time, dampening sectoral growth up to ten periods

after the shock. By distinguishing between the origin of the shocks coming from customer

or supplier sectors, I find that agriculture, a sector in the early stage of the supply chain,

besides being harmed by local shocks, is negatively affected by shocks in customer sectors,

which propagate upstream and can be interpreted as demand shocks. Conversely, sectors
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at later stages of the supply chain, such as wholesale, retail trade, restaurants and hotel,

and other activities, are negatively affected by shocks that hit supplier sectors and that

propagate downstream, as a result of supply-side productivity shocks, creating powerful

downstream propagation. When I compute the economic cost of recent warming from

2000 onwards accounting for trade interlinkages, I show that heat shocks are responsible

for an average annual output loss of 0.3%, highlighting a substantial underestimation of

estimates that omit sectoral linkages and underlining the importance of this channel as a

component of the total economic impact of climate change.

The contributions of this article relate to two main strands of literature. First, this

paper contributes to the climate economics literature by providing sector-specific evidence

on climate impacts across the world. Several cross-country studies have employed aggre-

gate measures of economic activity such as national or regional GDP per capita (Acevedo

et al., 2020; Akyapi et al., 2022; Burke et al., 2015; Burke & Tanutama, 2019; Dell et al.,

2012; Kahn et al., 2021; Kalkuhl & Wenz, 2020; Kotz et al., 2021) to measure the impact

of temperature fluctuations on economic production (see Newell et al. (2021) for a review).

Previous articles often use a coarse sectoral tripartition of the economy into agricultural,

manufacturing and service sectors to study the channels of the impact, finding that agri-

cultural production is the most damaged and industrial and service output are sheltered

(Acevedo et al., 2020; Dell et al., 2012). Kunze (2021) conducts a sector-disaggregated

global analysis of the effect of tropical cyclones, however, estimating each sector’s equation

separately. Regional studies examine the effect of temperature and cyclones on sectoral

production in the Caribbean and Central America area (Hsiang, 2010) and of tempera-

ture variability in Europe (Linsenmeier, 2021). This paper contributes to this strand of

the literature by providing jointly estimated sector-specific response functions to temper-

ature and precipitation anomalies, dryness conditions, and cyclone intensity with global

coverage of a six-sector economic production from 1970 through 2020.

Second, this paper introduces a new important element in the climate impact liter-

ature. Previous studies examine economic losses as a function of local weather shocks,

assuming that production depends only on local weather and holding conditions in other

locations fixed (Miller et al., 2021). Besides spatial correlation considerations to account
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for the global nature of climate change (Dingel et al., 2021), shocks can also propagate

through production networks across countries geographically distant. Previous studies

have investigated how input-output interlinkages amplify and propagate economic shocks

across US firms (Cravino & Levchenko, 2017; Giroud & Mueller, 2019) or sectors (Ace-

moglu, Akcigit, et al., 2016; Acemoglu, Autor, et al., 2016), and across countries (Das

et al., 2022). Theoretical studies and simulations show how natural disasters can spread

depending on the network structure (Henriet et al., 2012; Shughrue et al., 2020). Recent

empirical studies examine the propagation of natural disasters within the US (Barrot &

Sauvagnat, 2016) or after a localized single natural disaster such as the 2011 Japan earth-

quake or Hurricane Sandy in the US (Boehm et al., 2019; Carvalho et al., 2021; Kashiwagi

et al., 2021). Pankratz and Schiller (2021) show that temperature shocks and flood events

in supplier locations reduce customer firms’ performance. Studies at the firm level do not

justify whether idiosyncratic weather shocks have an important role in explaining macroe-

conomic fluctuations, which should wash out once aggregated across units (Lucas, 1977).

This paper contributes to the macroeconomic literature on the propagation of shocks by

studying weather shocks in the supply chain through sectoral interlinkages. Feng and Li

(2021) study international spillovers of climate damage and risks on stock market val-

uation but use natural disaster data based on reported damages. The closest article is

Kunze (2021), which considers endogenous network sectoral interlinkages and finds lim-

ited indirect effects of tropical cyclones due to stickiness in the production processes. The

findings can have substantial implications in terms of correct quantification of economic

damages of climate impact and the computation of the social cost of carbon, exploring a

new channel of spatial transmission of weather shocks that can amplify their effects on

the economy.

The remainder of the paper is structured as follows. Section 2 describes the data used

in the empirical analysis. Section 3 introduces the empirical approach adopted. Section 4

shows and summarizes the sectoral impact of weather shocks and Section 5 describes the

propagation of weather shocks through the economy. Section 6 concludes.
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2 Data

This section provides a summary of the main data sources used for the empirical analysis.

2.1 Sectoral production data

The sectoral economic production data come from the Economic Statistics Branch of

the United Nations Statistical Division (UNSD, 2022). The National Accounts Main

Aggregates database provides the Gross Value Added (GVA) by kind of economic activity

following the International Standard Industrial Classification (ISIC) revision number 3.1.

It contains information from 1970 through 2020 and for 205 countries.2 GVA is measured

in constant 2015 USD. The data set groups sectors in six broad groups (with the respective

ISIC code in parentheses): agriculture, hunting, forestry, and fishing (A&B); mining,

manufacturing and utilities (C-E); construction (F); wholesale, retail trade, restaurants,

and hotels (G–H); transport, storage, and communication (I); other activities (J–P).3 The

latter encompasses, among others, the financial sector, real estate, public administration,

education and health. This is, to the best of my knowledge, the most comprehensive data

set of economic production disaggregated by sector with global coverage and with the

longest time horizon.

2.2 Weather data

I combine three main sources of weather data that use geophysical climatic information

to construct measures of weather fluctuations and extreme weather events. The use of

these data, exogenous to the political and economic situations of the countries, overcomes

the endogeneity concerns in damage data sets based on reports and insurance data, such

2The sample of countries is larger than the number of recognized sovereign states since it also includes
quasi-autonomous countries such as Curaçao or Puerto Rico. Since the input-output data used as part
of the analysis do not contain information on these countries, the final sample does not consider these
countries. The final sample of countries and their frequency is reported in Table A1.

3The original data are available for seven sectors, since GVA in manufacturing (ISIC D) is also provided
standalone. I depart from previous articles using these data (Hsiang, 2010; Kunze, 2021) and consider
mining, manufacturing and utilities (ISIC C-E) as one single sector, since it is not possible to obtain a
separate measure of GVA sectoral production in mining and utilities (ISIC C & E) from manufacturing
(ISIC D) because value added across sectors is not additive.
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as the Emergency Events Database (EM-DAT), which is positively correlated with GDP

(Felbermayr & Gröschl, 2014) and prone to measurement error (Kousky, 2014).

2.2.1 Temperature and precipitation

I use temperature and precipitation data from the global reanalysis ERA-5 dataset com-

piled by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Muñoz

Sabater, 2019). Reanalysis data combine model data with observations from across the

world into a globally complete and consistent dataset using the laws of physics and rely

on information from weather stations, satellites and sondes, removing biases in measure-

ment and creating a coherent, long-term record of past weather (see Auffhammer et al.

(2013) for a discussion of reanalysis weather data). ERA-5 is available on a 0.25◦ × 0.25◦

resolution grid (≈ 28km at the Equator) from 1950 to the present. The original temporal

frequency is hourly, but I aggregate it into daily data for the empirical analysis.4

Following the standard methodology in the climate impact literature (Hsiang, 2016),

I compute any nonlinear transformation of temperature and precipitation at the grid

cell level before averaging values across space using grid-level weights and accounting for

fractional grid cells that partially fall within a country, and lastly summing or averaging

over days within coarser time intervals. This procedure guarantees to maintain weather

variability that would be otherwise lost when averaging weather variables over an entire

country. To have a measure of weather exposure for the average individual in a country and

to avoid giving excessive importance to weather in areas with little economic contribution

to sectoral production, when I aggregate grid-cell level information, I use time-invariant

population weights from the 2000 Landscan dataset (Bright & Coleman, 2001). When

constructing measures for the agricultural sector, I weigh grid-cell data by the proportion

of each grid cell that is under cropland in 2000, using the Global Agricultural Lands

dataset (Ramankutty et al., 2010).

4In particular, I use “2m Temperature”, i.e. the temperature of the air at 2 meters above the surface
of land, sea or inland waters, originally expressed in Kelvin (K) and converted to degree Celsius (◦C) and
“Total precipitation”, which accounts for the accumulated liquid and frozen water, comprising rain and
snow, fallen to the Earth’s surface measured in meters.
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2.2.2 Dryness and wetness

To introduce a measure of dryness and wetness, I use the Standardized Precipitation Evap-

otranspiration Index (SPEI), a climatological index used to measure dry and wet periods

that combines temperature variability, precipitation and potential evapotranspiration to

estimate cumulative deviations in soil moisture from normal conditions. This index com-

pares the amount of precipitation in a given area with its evapotranspiration needs. This

measure is considered superior to indices that only use information on rainfall to predict

droughts caused by climate change.

Vicente-Serrano et al. (2010) show that the effects of warming temperatures on droughts

predicted by global climate models can be clearly seen in the SPEI, whereas indices based

only on precipitation data such as the Standardized Precipitation Index (SPI) do not re-

flect expected changes in drought conditions. The SPEI also outperforms another drought

index, the Palmer Drought Severity Index (PDSI) (Palmer, 1965), which lacks of the multi-

scalar character essential for assessing drought in relation to different hydrological systems.

By combining the sensitivity of PDSI to changes in evaporation demand, caused by tem-

perature fluctuations and trends, with the multitemporal nature of the SPI, the SPEI is

the most accurate climatological measure of dryness and wetness (Vicente-Serrano et al.,

2012). To allow for water deficit accumulation over the entire year, I use the SPEI-12, the

version of SPEI computed at a 12-month time scale.

The SPEI is constructed using monthly precipitation and potential evapotranspiration

from the Climatic Research Unit of the University of East Anglia and it is normally

distributed within each grid cell with 0.5◦×0.5◦ resolution (around 56 km at the Equator).

Negative values represent conditions drier than the historical average, whereas positive

values represent conditions wetter than the historical average for a given grid cell.

I construct two types of measures of dryness and wetness. First, I take a weighted

average of the negative monthly values and obtain the average annual dryness with respect

to historical conditions. Second, to capture extreme conditions during a year I build two

variables measuring the share of total grid-months subject to extreme droughts (SPEI ≤

-2), and to periods with extreme wetness (SPEI ≥ 2) (McKee et al., 1993; Paulo et al.,
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2012). For each category, I consider the share of affected grid-cells in the month where

the share is at its maximum for each year (Akyapi et al., 2022).

2.2.3 Tropical cyclones

The last type of extreme weather event I consider is tropical cyclones. The measure of

tropical cyclones is taken from Kunze (2021), which uses meteorological data on wind

speed as previously introduced in the literature (Bakkensen & Barrage, 2018; Hsiang,

2010; Hsiang & Jina, 2014). The annual measure of tropical cyclones is a non-linear

function of wind speed which includes the cube of wind speed when wind speed is above a

92 km/h threshold, where wind speed is computed accounting for the maximum sustained

wind speed, the forward speed, the distance from the storm center and the radius of the

maximum wind (see Kunze (2021) for additional methodological details).

2.3 Sectoral interlinkages

Crucial to my analysis is the identification of sectoral interlinkages both domestic and

abroad. I use Input-Output (IO) data from EORA26 (Kanemoto et al., 2011; Lenzen

et al., 2012) to analyze how idiosyncratic weather shocks propagate through the economy.

This data set contains information on 26 sectors for 189 countries from 1990 to 2021

and has the widest geographic coverage in terms of intersectoral linkages.5 I only retain

information on the first available year of the IO matrix (1990) and consider propagation

of weather shocks through a pre-determined constant input-output network that does not

endogenously respond to the shock itself (Kunze (2021) shows a small and negligible shift

of sectoral interlinkages after tropical cyclones). I aggregate the 26 sectors to the six

sectors described in Section 2.1 to match the production network with sectoral output as

reported in Table A2.

5This data set contains, to the best of my knowledge, the richest information in terms of geographic,
temporal and sectoral information on input-output interlinkages. However, the data set presents few
limitations since some data are estimated and not measured and it is slightly less accurate than the
full EORA MRIO due to the aggregation of sectors from the higher sectoral detail of Eora to the lower
detail of EORA26, and to the conversion of Supply/Use tables to IO tables, which involves both a net
information loss and the introduction of some new assumptions.
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2.3.1 Construction of network shocks

To account for and quantify the propagation of weather shocks through the economy, I

construct a measure of network shocks that hit other sectors and that propagate through

trade interlinkages. I use sector-country level information in the IO matrix to construct a

weighting scheme that accounts for the importance of a sector depending on its geographic

location and position in the supply chain.

I distinguish network shocks along two dimensions that relate to geographic location

and supply chain stage. First, I distinguish between shocks originating in the same coun-

try as the sector of interest, domestic, and those originating in other countries, foreign

(Das et al., 2022). Second, I classify network shocks into downstream and upstream de-

pending on whether they hit sectors that are respectively suppliers or customers of the

sector of interest (Acemoglu, Akcigit, et al., 2016; Acemoglu, Autor, et al., 2016). From

the perspective of the sector of interest, downstream shocks originate in supplier sectors

and propagate downstream. Conversely, upstream shocks hit customer sectors and travel

upstream to the sector of interest.

In addition to the local own shock hitting sector s in country c, there are four different

types of network shocks depending on the supply chain position and geographic location:

upstream domestic (UpD), upstream foreign (UpF), downstream domestic (DnD), and

downstream foreign (DnF), constructed as follows:

ShockDnD
s,c,t =

∑
j ̸=s

ωs,c,j,cShockOwn
j,c,t (1)

ShockUpD
s,c,t =

∑
j ̸=s

ω̂s,c,j,cShockOwn
j,c,t (2)

ShockDnF
s,c,t =

∑
j

∑
k ̸=c

ωs,c,j,kShockOwn
j,k,t (3)

ShockUpF
s,c,t =

∑
j

∑
k ̸=c

ω̂s,c,j,kShockOwn
j,k,t (4)

where ShockOwn
j,k,t is a weather shock hitting sector j in country k in year t.6 I take

6Except for weather shocks in the agricultural sector which are obtained weighting weather variables
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a weighted average of the shocks hitting all sectors that sector s has a linkage with by

constructing the weights from the inter-country IO tables described in Section 2.3. Weights

are differently built for upstream and downstream shocks. From the perspective of sector

s in country c, for downstream shocks, I construct weights as

ωs,c,j,k =
inputjk→sc∑

lf∈Θsc

inputlf→sc

(5)

i.e., the ratio of the inputs supplied by sector j (in country k) to sector s (in country

c) over the total inputs that sector s sources from its set of supplier sector-countries Θsc.

These weights represent downstream propagation since they reflect the relative importance

of each supplier for the sector-country of interest sc.

The weights associated with measures of upstream shocks are constructed as

ω̂s,c,j,k =
inputsc→jk∑

lf∈Θ̂sc

inputsc→lf

(6)

i.e., the ratio of the inputs of sector s to each sector j over the total inputs supplied

by sector s to all sector-countries lf in its set of customers Θ̂sc. These weights represent

upstream weights since they reflect the importance of each customer for the sector-country

of interest sc. Given the level of aggregation of sectors, all six sectors are included in

both upstream and downstream weights. Figure A1 shows the average upstream and

downstream weights of each sector across countries (both domestic and foreign).

As a first step in the analysis, I consider network shocks only based on the geographic

location (domestic or foreign) of partners. In this case, I take an unweighted average of

upstream and downstream weights to obtain a measure of the average relative importance

of each sector-country.

by agricultural land coverage as detailed in Section 2.2, all other sectors in the same country as the sector
of interest s have the same weather shock.
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2.4 Summary Statistics

Table 1 presents summary statistics for sectoral production and bilateral IO interlinkages.

Although unbalanced, the sector-country panel dataset covers all countries in the world

for most of the fifty available years. On average, information for each sector-country tuple

is reported for 48 years.7

Table 1: Summary statistics on sectoral production and interlinkages

N mean SD min max

Log GVA per capita 50,223 6.147 1.796 -2.880 11.534
GVA per capita growth rate 50,223 0.016 0.120 -3.299 2.572
io Downstream (ω) 1,284,822 0.00083 0.01429 2.68e-11 0.99976
io Upstream (ω̂) 1,284,822 0.00084 0.01432 8.50e-11 0.9944
io Total (ω) 1,284,822 0.00083 0.01132 1.65e-10 0.73665

Sector
Agriculture, hunting, forestry, fishing (ISIC A-B) 7,472 0.003 0.104 -1.691 0.745
Mining, Manufacturing, Utilities (ISIC C-E) 8,572 0.012 0.125 -3.169 2.430
Construction (ISIC F) 8,566 0.015 0.167 -3.299 2.572
Wholesale, retail trade, restaurants and hotels (ISIC G-H) 8,522 0.016 0.108 -1.639 1.502
Transport, storage and communication (ISIC I) 8,519 0.027 0.109 -2.514 2.030
Other Activities (ISIC J-P) 8,572 0.019 0.085 -1.513 1.261

Number of countries 184
Number of sectors 6
Number of years per country-sector 47.92 6.27 12 50

Table 2 shows summary statistics for the main measures of weather shocks on tem-

perature and precipitation, dryness and wetness, and tropical cyclones. I first construct

a measure of changes in temperature and precipitation distribution, considering a bi-

nary variable that takes value one if daily temperature and precipitation are larger than

the previous year. Then, I consider how much daily temperatures and precipitation are

larger/smaller than the previous year. To avoid relying on absolute thresholds, I also

consider country-specific temperature and precipitation distributions and compute the

annual number of days above/below a certain percentile. As detailed in Section 2.2.2, to

measure dryness and wetness, I use the annual average of monthly conditions drier than

historical averages (in absolute value, so positive changes mean drier conditions) and the

maximum annual share of grid-months subject to extreme droughts or extreme wetness

periods, where values can range from 1 to -1, where unity means that all grids in a coun-

7Most of the sectors are covered for the whole time period except for recent geopolitical changes.
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try were affected by an extreme droughts/wetness month and none of them was in the

previous year. Summary statistics on additional weather variables used in the analysis

are reported in Appendix Table A4.

Table 2: Summary statistics on weather shocks

N mean SD min max

Temperature and precipitation
Positive difference in daily temperature sum {0;1} 8,572 0.524 0.499 0 1
Positive difference in daily precipitation sum {0;1} 8,572 0.497 0.500 0 1

Changes in daily temperature sum (∆◦C) 8,572 9.556 197.755 -1594.597 1704.612
Changes in daily precipitation sum (∆ m) 8,572 0.0008 0.010 -0.092 0.095

Temperature above 95th percentile (days/year) 8,572 18.986 16.5 0 152
Temperature below 5th percentile (days/year) 8,572 17.870 14.185 0 156
Precipitation above 95th percentile (days/year) 8,572 18.244 6.613 1 78
Precipitation below 5th percentile (days/year) 8,572 15.633 10.182 0 86

Dryness and wetness
Average dryness (∆ SPEI < 0) 6,204 -0.009 0.496 -2.181 1.924
Extreme drought prevalence (∆ share grid-monthsSPEI<−2) 8,448 0.002 0.252 -1 1
Extreme wetness prevalence (∆ share grid-monthsSPEI>2) 8,448 -0.001 0.195 -1 1

Tropical cyclones
Cubic wind speed (∆ km3/h3) 7,371 659.399 672,647.087 -17,838,080 17,856,152

Notes: Summary statistics are computed using country-year observations using only population-weighted weather shocks to avoid double
counting. Where ∆ is indicated in parentheses, variables are in first-difference, measuring changes in weather conditions from the previous
year.

3 Empirical Approach

The empirical analysis is conducted in two steps. First, I estimate the sector-specific

response in per capita GVA growth rate to weather shocks. Second, I analyze how weather

shocks hitting customer/supplier sectors domestically and abroad affect sectoral economic

production.

3.1 Sectoral impact of weather shocks

I estimate the sector-specific output-weather relationship using a pooled sample of sectoral

GVA per capita growth rates across 184 countries over 50 years. The effect of temperature

and precipitation on production is identified using year-to-year variation in the distribution

of daily weather, following, inter alia, Carleton et al. (2022) and Deschênes and Greenstone

(2011). Specifically, the baseline specification is written as
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∆ log(GV A)sct = fs(∆Wct) + αcs + λst + εsct (7)

where I regress the growth rate of GVA per capita in sector s in country c in year t

(approximated by the first difference in logarithms) on a sector-specific function of first

difference of weather variables W in country c in year t. I include country-sector, and

sector-year fixed effects to account for unobserved heterogeneity, such as history, culture,

geography and time-invariant sectoral compositions of national output, and year-specific

worldwide shocks, such as El Niño events or global recessions, and to specific sectors

(e.g. agricultural commodity price shocks). For instance, differences in country sizes and

different reactions to the same weather shocks do not pose a problem in the identification

strategy. I do not include any other traditional time-varying determinants of sectoral

production - such as investments or capital stocks - since they are endogenous to weather

variations themselves and may thus introduce bias in the estimates (Dell et al., 2014).

Standard errors are clustered at the country level to account for spatial correlation of the

error terms across sectors operating in the same country over time.

Equation (7) exploits plausibly exogenous within-country variation in changes in weather

fluctuations. This approach uses random weather shocks as identifying variation, which

differ from climate change (Mendelsohn & Massetti, 2017). Short-run and long-run elastic-

ities to weather fluctuations are the same only under certain assumptions (Lemoine, 2021),

therefore one should be cautious in extrapolating long-term impacts from the estimated

short-term responses (Tol, 2022).

Since GVA growth rate is stationary and temperature fluctuations in levels are non-

stationary, studying the relationship between GVA growth and weather variables would

reintroduce trends in the specification (for a deeper discussion, see Newell et al. (2021)

and Tol (2019)). For this reason, I consider first-differenced, stationary weather variables,

whereby I first compute any non-linear function and then take the first difference, following

a more recent approach (Akyapi et al., 2022; Kahn et al., 2021; Kotz et al., 2021; Letta

& Tol, 2019; Newell et al., 2021) rather than using levels in weather variables (Acevedo
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et al., 2020; Burke et al., 2015; Dell et al., 2012; Henseler & Schumacher, 2019).8

Although the use of changes in weather realizations already de-trends the variables in

the model, I test for the robustness of the model in alternative specifications including

country-specific linear (and quadratic) time trends to allow for non-linear evolution of

underlying country’s characteristics, such as demographic transitions and institutional

changes. In additional robustness checks, I also account for dynamics and serial correlation

in the dependent variable by including the lagged dependent variable among the regressors.

3.2 Propagation of weather shocks

To quantify the importance of network shocks relative to own shocks on sectoral activity, I

expand the specification accounting for weather shocks elsewhere, constructed as explained

in Section 2.3.1. The econometric specification is written as

∆ log(GV A)sct = γsShock
Own
sct +

∑
J

γJ
s Shock

J
sct + αcs + λst + ηsct (8)

where I expand Equation (7) with shocks in partner sectors J by geographic location

and supply chain position. I begin by including domestic and foreign weather shocks

weighted by the average interdependence of sector s with other sectors in the same country

c and other countries (i.e., J ∈ {domestic; foreign}). Then, I also disentangle upstream

and downstream weather shocks (i.e., J ∈ {domestic downstream; domestic upstream;

foreign downstream; foreign upstream}). The remainder of the specification is similar to

Equation (7), accounting for sector-country and sector-year unobserved heterogeneity.

This approach aims at quantifying the impact on sectoral production of trade-induced

exposure to weather shocks in other sectors. A typical panel fixed effects model would

study the effect of weather variations in a given location while weather elsewhere is fixed.

Climate change, however, is expected to alter atmospheric conditions across the world.

For this reason, the estimates obtained in Equation (7) would be biased by omitting spa-

tial considerations that are of first-order relevance because production and climate are

8I reject the null hypothesis of non-stationary series for all first-differenced economic and weather
variables performing the Im-Pesaran-Shin (2003) panel unit root test. Results are reported in Table A5.
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spatially linked, leading to violations of common identifying assumptions with first-order

effects. Weather shocks elsewhere affect sectoral market access which could improve or

deteriorate depending on market forces and trade relationships with other sectors. Al-

though I have no way to formally pin down the channel through which weather shocks

affect supplier production functions and customer demand (e.g. infrastructure or facility

damages, labor productivity losses), this approach uncovers the role of the propagation

channel for quantifying sectoral weather shocks. Omitting trade linkages across sectors

while weather shocks are positively spatially correlated would violate the stable unit treat-

ment value assumption (SUTVA) and produce bias in the estimates. The direction of the

bias is ex-ante ambiguous since it depends on market forces and on the network structure

of the trade relationship. On the one hand, weather shocks on trade partners can have a

positive effect on sectoral production through improvements in market access and lower

productivity of its competitors. On the other hand, shocks on trade partners characterized

by input specificity with low elasticity of substitution can impose declines in production.

4 Sectoral impact of weather shocks

The first part of the results explores the extent to which local weather shocks in the form

of temperature and precipitation fluctuations (Sections 4.1 and 4.2) and extreme weather

events such as droughts and cyclones (Section 4.3) affect sectoral economic production.

4.1 Changes in temperature and precipitation distribution

I exploit within-sector and across-countries year-to-year fluctuations in changes in temper-

ature and precipitation to identify their causal effect on economic production. Differently

than previous cross-country empirical evidence on the channels of the impact of weather

shocks on sectoral outcomes (Acevedo et al., 2020; Dell et al., 2012; Kunze, 2021), I es-

timate a pooled, multi-country, sector-specific response function as detailed in Equation

(7). This model allows me to jointly estimate responses of sectoral economic production

to weather shocks and compare the different response functions.

To provide some initial suggestive evidence on the heterogeneous sectoral response to
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weather shocks, I begin the analysis by using as a measure of weather shock a binary vari-

able indicating whether first-differenced annual changes in daily average temperature and

total precipitation are positive or negative. Figure 1 displays the 12 estimated coefficients

from the same pooled regression (6 sectors × 2 weather variables). Consistent with prior

literature (e.g., Acevedo et al. (2020)), I uncover substantial heterogeneity across sectors

in the multicountry sample. The agricultural sector responds the most to both temper-

ature and precipitation fluctuations. In particular, if daily average temperature is larger

than in the previous year, the agricultural GVA growth rate decreases by 0.7 percentage

points (point estimates are reported in Table A6), which translates into a 284% decrease

with respect to the sample average (0.002). The effect is large but comparable to previous

estimates on the effect of heat waves and tropical cyclones on agricultural growth rate

(Kunze, 2021; Miller et al., 2021). Conversely, agriculture seems to benefit from more

precipitation, as documented in prior literature (Cunado & Ferreira, 2014; Deschênes &

Greenstone, 2007; Schlenker & Roberts, 2009). The only other sector that responds elas-

tically to variations in annual temperature and precipitation distribution is transport,

storage and communication, which marginally benefits from hotter (15% increase of sam-

ple mean) and drier (17% increase of sample mean) conditions that, for instance, facilitate

transportation and storage and service communication.

I further investigate the effect of changes in the average daily temperature and pre-

cipitation distribution with the variables standardized to facilitate comparison. Figure 2

shows the estimated coefficients (see Table A7 for tabular results). As previously doc-

umented, agriculture strongly negatively reacts to positive hot temperature shocks but

benefits from more precipitation. In particular, a 0.01◦C daily increase with respect to

the previous year’s temperature (around 30% of the sample mean) is associated with a

decrease in agricultural per capita growth rate by 3% of the sample mean. Surprisingly,

all the other sectors positively respond to increases in the average daily temperatures, al-

though few sectors’ responses are estimated with less precision (other activities; transport,

storage and communication; wholesale, retail trade, restaurants and hotel). Conversely,

production in other sectors does not respond to changes in precipitations, except for the

transportation sector which benefits from drier conditions.
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Figure 1: Sector-specific impact of positive annual temperature and precipitation changes

Notes: The figure shows the OLS coefficients associated with the response of sectoral GVA per capita
growth rate to an indicator variable that takes value one if the sum of average daily temperature and
precipitation is larger than the previous year’s. The regression controls for lagged sectoral GVA growth
rate, country-sector, sector-year fixed effects. Bins represent the 90% confidence intervals around point
estimates. Standard errors are clustered at the country level.

Heterogeneity across adaptation potential. Until now, results referred to the av-

erage treatment effect for each sector across countries. One, however, may expect the

marginal effect of changes in temperature distribution to differ as a result of factors that

influence the adaptation potential of countries, namely climate and income. First, a hotter

climate may differentially incentivize governments and individuals to invest in adaptive

behavior as returns to adaptation would be relatively higher for more frequent temper-

ature changes. Second, richer countries have less binding budget constraints and wider

adaptation capacity to cope with weather fluctuations. Omitting income and climate

differences while allowing for heterogeneous marginal effects of temperature can lead to

biased estimates by attributing part of the response to income or climate effects.

To model heterogeneity on the temperature-production relationship accounting for

adaptation, I consider income groups as defined by the World Economic Outlook (IMF,

2022) and average temperature over the fifty years (i.e., long-run climate). These two
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Figure 2: Sector-specific impact of annual temperature and precipitation changes

Notes: The figure shows the OLS coefficients associated with the response of sectoral GVA per capita
growth rate to changes in the annual sum of average daily temperature. The regression controls for lagged
sectoral GVA growth rate, country-sector, sector-year fixed effects. Bins represent the 90% confidence
intervals around point estimates. Standard errors are clustered at the country level.

factors account for differential adaptation potential (Acevedo et al., 2020; Carleton et al.,

2022; Kahn et al., 2021). Firstly, I augment the baseline specification with an interaction

term distinguishing between advanced economies, emerging market economies, and low-

income developing countries. In a latter exercise, I include an interaction term that

splits the sample of countries in terciles depending on the average long-run temperature

in the fifty years for countries with cold, temperate and hot climate (Figure A2 shows

the sample composition). I obtain sector-specific response functions that are also income

group- and climate-specific allowing for these adaptation margins to influence the shape

of the output-temperature relationship. Since neither climate terciles nor income groups

have quasi-experimental variation as opposed to weather, the heterogeneous results shall

be interpreted as associational (Carleton et al., 2022).

Figure A3 graphically presents the results for the coefficient associated with annual

changes in the average daily temperature distribution interacted with income groups
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(Panel a) and with climate terciles (Panel b). Tabular results are reported in Table

A8 and A9. As conjectured, results are consistent with the hypothesis that income is pro-

tective (Figure A3a). Advanced economies are not harmed by increases in temperature

distribution. Importantly, agriculture production is sheltered in advanced economies to

the extent that the coefficient is positive and statistically significant. Some other sectors

(construction; mining, manufacturing, utilities; transport, storage and communication;

wholesale, retail trade, restaurants and hotels) also benefit from temperature increases

among the richest countries. Nevertheless, the coefficient of temperature increases on

agriculture remains strongly negative for emerging market economies and low-income de-

veloping countries. Moreover, these two income groups do not appear to benefit from

increases in temperatures in other sectors, with low-income developing countries’ esti-

mates that are always smaller in magnitude than for emerging market economies.

Very similar estimates are obtained exploring the climate adaptive margin. Figure

A3b shows a persistent and negative effect of increases in temperature on agricultural

production across different climates (smaller in magnitude in absolute value in the cold

climate countries and imprecisely estimated in the hot climate countries). Increases in

temperature harm other sectors in hot climate countries (construction; other activities;

wholesale, retail trade, restaurants and hotels), whereas they benefit production in both

the industrial and services sectors (construction; mining, manufacturing, utilities; other

activities; wholesale, retail trade, restaurants, hotel) in cold climate countries.

4.2 Abnormal weather realizations

Using first-differenced weather variables does not inform on how much atypical the weather

realization was with respect to individual expectations since it implicitly assumes that in-

dividuals rationally update their beliefs annually and neglect baseline levels of the changes.

However, people’s climate beliefs are formed over long-run climatic conditions (Zappalà,

2022b) and adaptive responses could reduce the impact of weather fluctuations on produc-

tion if societies can anticipate them based on their expectations (Shrader, 2021). Moreover,

weather realizations above or below certain absolute thresholds may not be informative on

global response functions since only a subset of countries could actually experience such
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levels (Osberghaus & Schenker, 2022).

For this reason, I investigate the effect of abnormal weather realizations defined as

the number of days in a year that belongs to the pth-percentile of the country-specific

temperature and precipitation daily distribution over the fifty-year period (where p ∈

{1; 5; 10; 90; 95; 99}). Using this methodology, the measure is evenly distributed across

countries in the world and any abnormal realization is compared to the country-specific

normal distribution. Location-specific time-invariant thresholds account for the influence

of long-run adaptation to climatic conditions on the effects of certain weather realizations.

In particular, this approach considers an implicit model of adaptation assuming that soci-

eties adapt using as a baseline a fifty-year time-invariant climate norm. This methodology

is consistent with previous results that condition the temperature-production response

function on long-run average temperature. These events shall be interpreted as abnor-

mally cold and hot, or dry and wet, respectively, for the bottom and top percentile of the

distribution of temperature and precipitation.

I estimate the effect of an increase in the number of abnormal weather realizations

in a year both for temperature and precipitations in a pooled multi-sector model so that

estimates can be directly compared. The identification strategy relies on the estimation

of the impact of increases in the number of abnormally cold and hot, dry and wet days

using days in the rest of the distribution as the baseline category. Figure 3 shows the

(standardized) coefficients associated with the number of days above the 95th and below

the 5th percentile of the fifty-year daily temperature and precipitation distribution. Figure

3a confirms the previous findings consistent with prior literature that agriculture is the

most harmed sector by heat shocks. An additional day above the 95th percentile of the

daily temperature distribution in the sample reduces the agricultural growth rate by 0.03

percentage points (11% of its sample mean). Cold temperature shocks have a similar

sizeable effect on agriculture, harming crops that cannot grow below a certain temperature.

An additional day below the 5th percentile reduces the agricultural growth rate by 10%

of its sample mean. Most of the other sectors seem not to respond to temperature shocks

neither hot nor cold, except for the construction sector, which is marginally affected by

increases in temperature realizations above the 95th percentile (growth rate decreases by
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1.2% of sample mean) and benefits from cold temperature shocks (growth rate increases

by 1.8% of sample mean). The estimates of hot and cold shocks are very similar in

magnitude, providing little evidence of asymmetry in the relationship between sectoral

production and abnormal realizations of temperature from its historical norm.

Conversely, wet precipitation shocks do not affect sectoral production (Figure 3b) ex-

cept for a positive effect of an additional day of precipitations above the 95th percentile

on agricultural production. There are two potential explanations behind these findings,

coherent with prior literature. First, excessive and insufficient precipitation may not be

adequate indicators of water availability (Proctor et al., 2022; Russ, 2020). Second, precip-

itation as a weather phenomenon exhibits considerable spatial variation and aggregation

at the country level may mask too much meaningful variation that could explain the null

and noisy estimates associated with precipitation variables. In order to partially address

the first concern, in Section 4.3, I further explore sector-specific responses to a different

measure of dryness that accounts for potential evapotranspiration and provides a more

complete picture of the water availability cycle. The second concern cannot be overcome

due to the lack of data availability of sectoral production at finer administrative levels

across the whole world. Previous sub-national studies have shown for aggregate measures

of economic activity in Europe (Holtermann, 2020) and across the world (Kotz et al.,

2022) that precipitation anomalies reduce economic growth. Future data collection efforts

should be steered towards obtaining globally comprehensive and comparable measures of

disaggregated sectoral production at finer geographic levels.

The baseline results are robust to how “abnormal” is defined, whether I use the top/bot-

tom first, fifth or tenth percentile of the daily distribution (Figures A4 and A5 replicate

the same exercise using the 1st and 99th, and 10th and 90th percentile). Results are also

robust to estimating the baseline equation in a balanced panel (Figure A6a) and excluding

large countries (i.e., Brazil, China, India, Russia, US) that may suffer from aggregation

bias in cross-country analysis (Figure A6b).

Time-varying climate norms. Lastly, instead of fixing the weather distribution to the

fifty-year period, one can construct measures of temperature and precipitation relative to

their time-varying historical norms. Following Kahn et al. (2021), I construct time-varying
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Figure 3: Abnormal weather realizations

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of days
above the 95th and below the 5th percentile of the daily distribution in temperature (Panel (a)) and
in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals around point estimates. Standard errors are clustered at the country level.

country-specific distributions over the preceding m years for each t, where m ∈ {20; 30; 40}.

I exploit the temporal horizon of the weather data that start from 1950. The official World

Meteorological Organization definition of climate (i.e., norm) corresponds to thirty years

(Arguez et al., 2012), but I check for robustness considering other time spans. Different

lengths of historical norms imply different belief formation and adaptation processes (the

longer the time span of the historical norm, the slower individuals update their beliefs and

treat the new distribution as the new norm). Smaller climate damage for shorter time

spans over which the distribution is computed would provide suggestive evidence on the

rate of speed of adaptation (Kahn et al., 2021). Although the sectoral production data

begin in 1970, to compare estimates across time-varying historical norms with different

time spans, I consider data starting from 1990.

Figure A7 shows the coefficients associated with abnormal temperature and precipita-

tion realizations with respect to a time-varying country-specific daily distribution. Results

are very similar to baseline estimates, showing that agriculture is negatively affected by hot

temperature shocks. Assuming different speeds of change for the historical climate distri-

bution (20-, 30- or 40-year) does not significantly alter the point estimates. The negative
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effect of heat shocks on agricultural production is persistent, suggesting that adaptation

has not entirely offset climate damages. There is some suggestive, although small, degree

of adaptation in other sectors (transport, storage and communication; mining, manufac-

turing and utilities; wholesale, retail trade, restaurants and hotel), where output losses

are mitigated and converted into gains, for faster time-varying climate norms. Results are

similar and robust to the use of the 1st and 99th, and 10th and 90th percentile (Figures A8

and A9).

4.3 Sectoral impact of extreme weather events

The first set of results has shown that, consistent with prior literature, agriculture is

the most directly harmed sector by temperature and, to a lesser extent, precipitation

fluctuations and anomalies. In this section, I turn on investigating whether similar results

hold when using physical measures of intensity of extreme weather events for droughts

and cyclones.

4.3.1 Dryness and wetness

First, I study the effect of changes in average dryness conditions as the first-differenced

average of monthly negative values of the SPEI in a country in a year. Next, I focus on the

changes in the prevalence of extreme dryness and wetness conditions, using the annual

maximum share of grid-months with extreme drought (SPEI<-2) and extreme wetness

(SPEI>2) conditions in a country. Figure A10 shows the (standardized) sector-specific

coefficients obtained from a multi-country, sector-specific response function for the three

different measures of dryness and wetness. Tabular results are reported in Table A10. As

previously documented, I find a strong negative effect of dry conditions on agriculture.

In particular, a 1 SD increase in changes in average dryness conditions is associated with

a 75% decrease in agricultural growth rate with respect to its sample mean. All other

sectors are not significantly affected.

Moving to measures of extreme drought and wetness prevalence, the results are con-

sistent with previous findings. Agricultural growth rate is largely negatively affected by
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changes in extreme drought prevalence. In other sectors, where precipitation can nega-

tively affect the productivity of workers and the operation of machinery and infrastruc-

ture, the effect varies. The construction growth rate benefits from positive changes in

droughts, and so does the transport, storage and communication sector, although impre-

cisely estimated, whereas all the other sectors are not affected. These findings confirm that

sectors that rely on roads, building construction and storage infrastructure may benefit

from relatively drier conditions than historical averages with no excessive water surplus.

The negative, although imprecisely estimated, coefficient associated with extreme wetness

prevalence on production in the transport sector corroborates this hypothesis. These sec-

tors have “interface” areas, such as loading and unloading areas (Cachon et al., 2012),

which are more subject to weather variations and difficult to be protected with shelters

(Colacito et al., 2019). In all the other sectors, extreme wetness conditions do not have any

statistically significant effect, as previously documented using wet precipitation shocks.

4.3.2 Tropical cyclones

Tropical cyclones are the only extreme weather event on which there is previous evidence of

their impact on sectoral growth worldwide (Kunze, 2021). I replicate and extend previous

analysis estimating a pooled stacked multi-sector regression with jointly estimated sector-

specific coefficients instead of separate regressions, which allows me to directly compare

the coefficients to identify the effect of tropical cyclones.9 As in previous estimations, I do

not allow for a relationship between the GVA sector and the level of intensity in tropical

cyclones as measured by wind speed, and instead, consider changes.

Figure A11 presents the sector-specific (standardized) coefficients associated with changes

in tropical cyclone intensity. Tabular results are displayed in Table A11. Tropical cyclones

have the largest negative effect on agriculture. A 1 SD increase in changes in tropical cy-

clone intensity is associated with a drop by 2.8 percentage points in the annual growth

rate of agriculture (comparable to a 2.62 decrease documented in Kunze (2021)). Results

differ, however, for the other sectors. Most importantly, I document that changes in wind

9My analysis also differs in the definition of the sectors since I do not account for the manufacturing
sector separately as explained in Section 2.1.
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speed have a strong negative effect on other activities, suggesting that this sector contracts

production in response to positive changes in cyclone intensity. I also do not recover a

significant negative effect on the wholesale, retail trade, restaurants and hotel sector but

I find a small effect indistinguishable from zero. Although similar results are found in the

analysis of the effect of tropical cyclones in the agriculture sector (Hsiang, 2010; Loayza

et al., 2012), the contraction in economic production in other activities sector, which in-

cludes the financial and government sectors, is a new result, suggesting a negative effect

on the economy overall in the short-run.

5 Propagation of weather shocks

The previous section has shown that even in a highly disaggregated sector analysis, agri-

culture is the most damaged sector by weather fluctuations and extreme weather events. In

the second part of the empirical analysis, I investigate the propagation of weather shocks

across the economy through input-output networks. I focus on three weather shocks:

abnormal temperature shocks (Section 5.1), extreme drought prevalence and tropical cy-

clones (Section 5.2).

5.1 Abnormally hot temperature shocks

The first weather shock uses abnormally hot temperature realizations measured as the

number of days above the 95th percentile of the country-specific temperature daily dis-

tribution. I begin the analysis by estimating Equation (8) including an average of the

heat shocks in domestic trade partners weighted by the input-output interlinkages (as an

unweighted average of upstream and downstream interlinkages) with each specific sec-

tor. The hypothesis behind this approach is that by only considering the direct impact

of weather shocks on a given sector, one is omitting the amplification and transmission

of such shocks due to the intersectoral reliance. In other words, a negligible or null di-

rect effect of weather shocks on a given sector may be amplified by the same weather

shock hitting other sectors in the same country that have a relatively strong commercial

interlinkage with the sector of interest.
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Domestic shocks. Figure A12 presents the estimates of own and network domestic

shocks when weighing weather shocks in sector s’s domestic trade partners by the input-

output interlinkages. All coefficients are standardized and show distinctly that sectors

are negatively harmed by abnormally hot temperatures through network shocks. The

only sector that is directly harmed by weather shocks is agriculture. Comparing the

point estimates of the direct shocks with the estimates obtained without accounting for

network shocks (Figure 3a), the effect on agriculture is still negative but slightly smaller

in magnitude in absolute value (-0.036 instead of -0.039), whereas the coefficients on the

other sectors are now positive but not statistically different than zero.

These findings have two consequences in the interpretation of previous results. First,

sector-specific estimates that account only for the direct impact of weather shock may be

downward biased since shocks propagating from other sectors are omitted. This result

underlines the importance of separately capturing direct and indirect effects, which are

highly correlated due to the spatial clustering of weather shocks. Second, until now,

the climate impact literature has focused on sector-specific impacts (Carleton & Hsiang,

2016) and identified agriculture as the main channel. Nevertheless, accounting for the

input-output interlinkages of the sector shows that weather shocks are amplified in the

economy and indirectly affect the other sectors, too. In terms of magnitude, the effect

of domestic network shocks on the other sectors is comparable with the direct damage

estimated on agriculture. This implies that recent estimates on the economy have been

largely underestimated due to the propagation of shocks across sectors.

Foreign shocks. The analysis can be expanded by including foreign shocks, as the av-

erage of weather shocks in foreign sector-countries weighted by input-output interlinkages.

Figure 4 displays the coefficients associated with own and network heat shocks decom-

posed into domestic and foreign. Domestic shocks have a negative and sizable effect on

economic production across all sectors. Although imprecisely estimated for agriculture

and mining, manufacturing and utilities, the coefficients on domestic shocks are larger in

absolute value. This suggests that accounting for foreign weather shocks corrects for the

upward bias in the previous estimation and contradicts the hypothesis that geographi-

cally distant weather shocks are idiosyncratic and orthogonal to local ones. Conversely,
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foreign shocks have a negative effect across all sectors - except for construction - although

never statistically significant, mostly due to large imprecision in the estimates. A poten-

tial worry on firms within a sector endogenously selecting trade partners based on their

location and their exposure to weather shocks would not be a threat to the identification

of the transmission of shocks, since it would bias the results against finding any effect.

Figure 4: Domestic and foreign heat shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks, using the average number of days above the 95th percentile of the daily
temperature distribution. Domestic shocks are constructed as the average weather shock in the other
sectors in the same country as the sector of interest weighted by the average of upstream and down-
stream interdependence with each sector. Symmetrically, foreign shocks are constructed as the average
weather shock in the other sectors in all the other countries weighted by the average of upstream and
downstream interdependence with each sector. All sector-specific coefficients are estimated jointly in a
stacked regression model fully saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th percentile and sector-specific re-
sponses to precipitation realizations below the 5th and above the 95th percentile. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Although the analysis underlines the importance of trade interlinkages as a transmis-

sion channel of weather shocks, identifying this mechanism is still subject to a fundamental

challenge posed by spatial correlation due to the global nature of the phenomenon altering

weather conditions everywhere (Dingel et al., 2021). To address this potential concern, I

estimate a more conservative specification that exploits weather variation that is spatially

uncorrelated. This is done by employing fixed effects at spatial levels broader than the unit

of observation (Deschenes & Meng, 2018). Figure A13 shows the estimated coefficients in

a regression that additionally controls for subregion-by-year and continent-by-year fixed

effects.10 This approach identifies weather variation that is local to the unit of observation

and uncorrelated with weather elsewhere within the same subregion/continent, suggesting

that network effects persist, these are due to trade interlinkages and not spatially corre-

lated shocks. The strong negative effect of domestic shocks in the construction; other

activities; transport, storage and communication; wholesale, retail trade, restaurants and

hotel sectors is robust to the inclusion of these additional fixed effects.

Exposure shares do not account for own trade, therefore the total sum of trade inter-

linkages varies across observations. To account for incomplete shares, I interact period

fixed effects with the sum of exposure shares (Borusyak et al., 2022). The effects are robust

to this specification (Figure A14a). Results are also robust to estimating the equation in a

balanced panel (Figure A14b), excluding large countries (i.e., Brazil, China, India, Russia,

US) (Figure A14c) and starting the analysis from 1990, allowing for strongly exogenous

pre-determined sectoral interlinkages (Figure A14d).

Upstream and downstream shocks. Besides geographic heterogeneity, shocks in

trade partners in different stages of the supply chain can propagate differently. I de-

compose domestic and foreign shocks into upstream and downstream, weighing weather

shocks by the relative inputs sourced from or supplied by a sector, as detailed in Section

2.3.1. Figure 5 zooms into the effect for three specific sectors at the extremes of the supply

chain. Agriculture is an example of a sector in the early stages of the supply chain, while

10Subregions divide the world in 17 zones: Australia and New Zealand, Central Asia, Eastern Asia, East-
ern Europe, Latin America and the Caribbean, Melanesia, Northern Africa, Northern America, Northern
Europe, Polynesia, South-eastern Asia, Southern Asia, Southern Europe, Sub-Saharan Africa, Western
Asia, Western Europe
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other activities, and wholesale, retail trade, restaurants and hotel are two examples of

sectors in later stages (Figure A15 shows the complete results for the six sectors).

The agricultural sectoral growth rate mostly suffers from upstream weather shocks,

which are negative both for domestic and foreign shocks, and benefits from downstream

weather shocks, positive both for domestic and foreign, although foreign shocks are impre-

cisely estimated. This result supports the hypothesis that weather shocks affect sectors

in early stages of the supply chain as a demand-side shock that propagates upstream.

Weather damages to agriculture go beyond their impact on crop productivity and the

sector is also harmed by changes in input demands from its downstream customers.

In contrast, sectors in the later stages of the supply chain present opposite results.

On the one hand, their growth rate is harmed by abnormally hot temperature shocks in

supplier sectors both domestically and abroad, which propagate downstream. Regardless

of the channel through which supplier sectors are damaged (e.g. capital/infrastructure

destruction, labor productivity losses), climate impact on customer sectors is amplified by

market reactions that slow down downstream production (Wenz & Levermann, 2016). For

example, a fall in agricultural productivity reduces the demand for local non-traded goods

such as services. On the other hand, foreign and domestic upstream shocks have positive

effects, with shocks happening in other countries larger in magnitude and statistically

significant, indicating potential mitigation of climate damages arising from competition

and effects on prices. The downstream propagation of shocks on suppliers to their cus-

tomers confirms at the macro-level previous results documented at the firm-level (Barrot &

Sauvagnat, 2016), whereas the upstream propagation of demand-side weather shocks from

customer sectors in the early stages of the supply chain sheds light on a new transmission

channel.

Persistence of network shocks over time. While the findings show clearly that

domestic and foreign shocks matter for sectoral economic output, the estimates focus only

on short-run, contemporaneous impacts. It remains an open question whether the shocks

have permanent effects on the level of GVA per capita. There is a long-standing debate on

the “growth-vs-level” effect of weather shocks and extreme weather events (see Tol (2022)

for a review). With the exception of persistent growth effects on aggregate output in Kahn
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Figure 5: Network abnormally hot temperature shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks distinguished between upstream and downstream, using the average number
of days above the 95th percentile of the daily temperature distribution. Domestic upstream (resp. down-
stream) shocks are constructed as the average weather shock in the other sectors in the same country
as the sector of interest weighted by the upstream (resp. downstream) interdependence with each sec-
tor. Symmetrically, foreign upstream (resp. downstream) shocks are constructed as the average weather
shock in other sectors abroad weighted by the upstream (resp. downstream) interdependence with each
sector. The figure reports only the coefficients associated with agriculture, other activities and wholesale,
retail trade, restaurants and hotel, the specification jointly estimates all sector-specific coefficients in a
stacked regression model fully saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th percentile and sector-specific re-
sponses to precipitation realizations below the 5th and above the 95th percentile. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.

et al. (2021), recent evidence has consistently documented level effects of temperature

(Akyapi et al., 2022; Kalkuhl & Wenz, 2020; Newell et al., 2021). I examine longer-run

effects of direct and network shocks estimating a set of local projections (Jordà, 2005) to

obtain impulse response functions. Local projections are more robust to misspecification

of the data-generating process and to lag length by not imposing dynamic restrictions as
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in autoregressive distributed lag models. The set of estimating equations is written as

∆ log(GV A)sct+h = γshShock
Own
sct +

∑
J

γJ
s,hShock

J + αsc + µct + εhsct (9)

where h ≥ 0 indexes the time horizon measured in years up to 10 and when h = 0,

the equation reduces to Equation (8). The goal is to estimate, for each horizon h, the

effect of network shock J (where J ∈ {Domestic; Foreign}) accounting for dynamics up

to 10 years after the shock. The dependent variable is then the cumulative growth rate of

sectoral per capita production between horizons t− 1 and t+ h, proxied by the difference

in the natural logarithms of per capita GVA.

Before examining the sector-specific results, I estimate local projections on total value

added at the country level. Figure A16 shows the impulse response functions for a stan-

dardized domestic (Panel a) and foreign (Panel b) heat shock. Domestic shocks are the

average number of days above the 95th percentile of the country-specific daily temperature

distribution weighted by the trade interlinkages across sectors within the country. Foreign

shocks aggregate heat shocks in other countries across sectors. Domestic heat shocks have

a persistent effect on total value-added levels, with the coefficient estimate that does not

increase in absolute value over time. The estimates are however small in magnitude, noisy,

and not distinguishable from zero. Foreign heat shocks have a positive significant effect

starting from five years after the shock, suggesting competition and price effects are at

play.

Figure 6 displays the sector-specific impulse response functions for a standardized do-

mestic heat shock obtained from the estimation of a stacked, multi-country, sector-specific

regression that also includes own and foreign shocks. Results show that aggregation was

hiding substantially heterogeneous effects. Several sectors all along the value chain do not

recover from abnormally hot weather shocks from domestic partners, with strong negative

growth effects in construction; mining, manufacturing and utilities; and wholesale, retail

trade, restaurants and hotels sectors. A domestic weather shock has a negative growth

effect also on other activities, that however lasts only five years and estimates then become

statistically indistinguishable from zero.
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Figure 6: Local projections of domestic abnormally hot temperature shocks on sectoral
production

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth rate
to a 1 SD increase in the domestic abnormally hot temperature shocks estimated in a stacked regression
model fully saturated with country-sector and sector-year fixed effects and accounting for sector-specific
responses to direct and foreign abnormally hot temperature shocks, to abnormally cold temperature shocks
(below the 5th percentile) and to precipitation realizations below the 5th and above the 95th percentile.
Horizon 0 is the year of the shock. Shaded areas represent the 90% confidence intervals with standard
errors clustered at the country-level.

Figures A17 and A18 display the impulse response functions using own and foreign

shocks. First, in line with prior country-level evidence using aggregate measures of eco-

nomic production, I find that direct shocks do not have a persistent growth effect on

sectoral production. Agriculture is the only sector that is harmed, whereas the others

appear relatively inelastic to abnormally hot temperature shocks (with the exception of

transport, storage and communication, in which the negative effect of weather shocks
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manifests only after five years). Nevertheless, in the case of agriculture, the negative ef-

fect lasts only one year and dissipates thereafter, confirming no visible long-run growth

effects. Second, considering foreign shocks, estimates are very small in magnitude and

positive but not distinguishable from zero at any lag, suggesting that sectoral economic

production could benefit from abnormally hot foreign weather shocks, potentially due to

competition and price effects. Focusing on a more spatially disaggregated definition of

foreign shocks seems a promising avenue for future research. Overall, results demonstrate

the importance of accounting for trade-induced propagation of weather shocks in affecting

local economic outcomes and their persistence over time.

5.2 Other extreme weather events

Droughts. The next analysis considers changes in droughts hitting trade partners do-

mestically and abroad. Dryness conditions have been shown to directly harm agriculture

and marginally benefit sectors that would be less productive under wetter conditions than

the historical average, such as transportation and construction. The structure of Fig-

ure A19 is identical to that examining heat shocks. The results are also similar. Even

when accounting for network shocks, agriculture is the only sector that is directly harmed

by drought shocks, with a sizeable negative effect of 0.09 p.p. (sample mean is 0.002)

associated with a 1 SD increase in the dryness conditions in the country. Conversely,

own drought shocks strongly benefit economic production in other sectors (construction;

mining, manufacturing and utilities; and transport, storage and communication sectors)

improving the precision of the positive estimates obtained when omitting network shocks.

Industries in the tertiary sector at later stages of the value chain, such as wholesale, retail

trade, restaurants and hotel, and other activities, are virtually not impacted at all by their

own drought shocks, with a coefficient very close to zero.

Focusing on network shocks, domestic shocks have a strong negative effect only on

economic production in mining, manufacturing and utilities, whereas their negative ef-

fect on construction; transport, storage and communication; and wholesale, retail trade,

restaurants and hotel are imprecisely estimated. Conversely, foreign shocks have a sizable

negative effect on other activities and wholesale, retail trade, restaurants and hotel sug-
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gesting strong propagation of droughts through the economy and across countries in later

stages of the supply chain. Peculiar and outstanding is the case of mining, manufacturing

and utilities sector which is strongly harmed by domestic droughts, with a magnitude

comparable to the coefficient associated with own shocks, suggesting that the net effect

of droughts in a country on this sector is not as positive as own shocks alone indicated.

Accounting for both domestic and foreign network shocks sheds light on the true overall

sectoral damage due to droughts accounting for shocks hitting other partner sectors.

Tropical cyclones. The last shock considers changes in tropical cyclone intensity as

measured by wind speed. This shock has been shown in Section 4.3.2 to have the widest

impact across sectors, damaging agriculture and other activities. Since cyclones are an

extreme weather event that may also have direct impact on capital stock destruction,

trade linkages may either amplify or mitigate the aggregate damage suffered by sectors.

Figure A20 decomposes the network shocks by geographic location into foreign and

domestic, besides including the sector-specific local shock. Agriculture and other activities

remain the only two sectors directly harmed by tropical cyclones. Domestic shocks do not

appear to have strong effects, particularly so at earlier stages of the value chain, whereas

they have a strong negative effect on transport, storage and communication growth rate

with an effect of magnitude comparable and larger than the direct effect on other activities.

Foreign network shocks have a null effect for most of the sectors, except for wholesale,

retail trade, restaurants and hotel which is positive. In particular, this is a sector that

one would expect to benefit the most from international competition. Damages in other

countries due to cyclone shocks may improve sectoral economic production.

6 Discussion and conclusion

Recent studies in the climate impact literature have pushed forward the frontier for a

timely, accurate and local measure of climate damages across sectors. The findings can

have substantial implications for an adequate quantification of the total economic impact

of climate change (Tol, 2022). This paper contributes to this effort by shedding light on

a new potential component of climate damages, arising from the propagation of weather
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shocks through production networks across sectors and countries, and over time. Com-

plementing firm-level evidence on the spillover effects of natural disaster shocks, I find

that the amplification mechanism persists when aggregating units at the sector level and

generates substantial fluctuations in sectoral production. Accounting for the local effect

of weather shocks on sectoral economic output is not sufficient for an accurate measure of

total economic damages.

I find that sectors not negatively affected by local weather shocks suffer economic

losses due to the interdependence of their production process with other sectors that are

hit by weather shocks domestically or abroad. In particular, sectors at later stages of

the supply chain, such as transport, storage and communication; wholesale, retail trade,

restaurants and hotels and other activities are negatively impacted by heat shocks in other

sectors, with a loss comparable in magnitude to the direct impact on agriculture. I also

find a strong negative persistent growth effect of domestic shocks in certain sectors’ output

(construction; mining, manufacturing and utilities; wholesale, retail trade, restaurants and

hotels) up to ten years since the shock occurred. In light of the negative and persistent

impact of network shocks, these findings suggest that climate damages may be larger than

indicated by standard empirical approaches and integrated assessment models.

To assess the economic importance of the propagation of weather shocks through pro-

duction networks, I compare the differential sectoral output losses/benefits as a result of

recent historical warming. Prior research quantifies the impact of temperature increases

assuming a counterfactual with no further warming (e.g., Burke et al., 2015; Burke &

Tanutama, 2019; Kalkuhl & Wenz, 2020). To account for adaptive adjustments to changes

in climate, using heat shocks, I simulate how much slower or faster each sector would have

grown over the 2001-2020 period, compared to a counterfactual in which the number of

abnormally hot days in each country evolves linearly from its 1970-2000 long-run average,

omitting and accounting for the propagation of shocks (Figure A21, see Appendix Section

A.3 for additional details).

Omitting heat shocks in sector partners substantially underestimates the losses due to

recent warming. Even those countries at extreme latitudes, such as Canada, Greenland

and Russia, previously deemed to be sheltered by climate damages and to benefit from
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gradual warming in agricultural production, experience sizable output reductions when

accounting for shocks in the whole production network. The average annual relative GVA

per capita loss across sectors due to recent warming considering only sector-specific local

shocks is -0.02% (-0.04% median, IQR [-0.09,0.02]), whereas accounting for indirect heat

shocks is 0.28% (0.24% median, IQR [0.04,0.44]). In particular, only agriculture and

mining, manufacturing and utilities are damaged by local heat shocks compared to a

counterfactual scenario where heat shocks increased linearly from the trend in 1970-2000.

The other services sectors result sheltered.

Accounting for heat shocks in trade partners, damages are particularly larger in those

sectors that appear sheltered from local shocks (mining, manufacturing, utilities; other

activities; transport, storage and communications), while there is larger heterogeneity in

relative losses in construction and wholesale, retail, hotel and restaurants: larger damages

in Sub-Saharan Africa and South-East Asia are offset by modest benefits in Latin America

and Europe. Using each country’s average sectoral breakdown of total GVA between 2001

and 2020, I aggregate sector-specific damages to obtain the total average relative losses

for each country. Accounting for indirect heat shocks, national damages are substantial

(0.3% mean, 0.26% median, IQR [0.16,0.37]) and largely underestimated when omitting

heat shocks propagation (-0.02% mean, -0.01% median, IQR [-0.04,0.05]) (Figure 7).

This article presents some limitations that open the avenue for further research. First,

the analysis provides modest but suggestive evidence of the role of adaptation to enhance

their resilience to climate damages. However, the analysis does not explicitly model adap-

tive investments, technological change, or other sector-specific adaptive responses (e.g.

irrigation, sea walls...) that may heterogeneously affect the response functions and miti-

gate climate damage. Accounting for other adaptive margins may also differentially drive

the propagation of shocks in countries that are more sheltered from weather shocks. Sim-

ilarly, the analysis does not account for fiscal policy responses that can be implemented

to address climate-induced economic losses (Nakatani, 2021; Noy & Nualsri, 2011). First,

these policies play usually a role in the aftermath of natural disasters. Second, I study

the transmission of weather shocks and not of shock-induced damages in other sectors and

countries. Therefore, the estimates shall be interpreted as the net effect.
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Figure 7: Average annual per capita GVA losses (%) due to recent warming

Notes: The figure shows the average annual losses (in red) and gains (in blue) in per capita GVA (%).
Sector-specific damages are weighted by the average sectoral share of total GVA between 2001 and 2020.
The world map at the top only accounts for sector-specific local heat shocks, the world map below accounts
for shocks in other partner sectors using sector-specific semi-elasticities from Equation (8) estimated with
1000 bootstrap replications with replacement.

Second, the analysis is mostly silent about decision-makers climate beliefs and expecta-

tion formation processes. Despite the use of explicit and implicit models of adaptation ac-

counting for the two most important factors that govern adaptation (climate and income),

adaptive behavior reflects individual perceptions of climate change more than actual me-

teorological conditions, with inaccurate beliefs explaining substantial economic losses due

to inadequate adaptation (Zappalà, 2022a). In a similar vein, expectations also matter

in accounting for adaptation costs and benefits (Carleton et al., 2022; Shrader, 2021).

Future research should focus on allowing for heterogeneous perceptions and expectations

of climatic conditions in production networks and supply-chain relationships.
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Third, the analysis is conducted at a spatial level that may yet mask substantial vari-

ation both in economic responses and local weather fluctuations. High spatial resolution

particularly matters for estimating the effect of precipitation on economic output (Kotz et

al., 2022). Replicating the analysis on disaggregated sector-level sub-national data could

show new estimates on sector-specific elasticities to weather fluctuations and shed new

light on within-country regional propagation of weather shocks across sectors.

Fourth, the transmission of weather shocks is studied through the relative importance

of trade partners in input-output interlinkages. As previously shown (Barrot & Sauvagnat,

2016), the input specificity and elasticity of substitution are key drivers of the transmis-

sion of firm-level shocks. Weather shocks can differentially propagate in supply chains

depending on search frictions and relation-specific investments that affect industry sup-

plier competitiveness, input concentration, and supplier diversification (Eaton et al., 2022;

Pankratz & Schiller, 2021). These channels have only been documented at the firm level

and it would be interesting to examine these additional layers of heterogeneity in the exact

channel of transmission of weather shocks through the economy.

Last, the analysis has focused on the propagation of weather shocks in an exogenous

time-invariant trade network. Sectoral reallocation is increasingly acknowledged and stud-

ied as a potential adaptive margin to climate change (Desmet & Rossi-Hansberg, 2015;

Nath, 2020), although only through calibrated simulations. Adjustments in trade patterns

substituting affected sectors with sectors in unaffected places as a response to idiosyncratic

weather shocks seem a promising avenue for future research.
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A Appendix

A.1 Figures

Figure A1: Average weights across countries

(a) Upstream (b) Downstream

Notes: The figure shows the average weights across countries by sector for upstream and downstream
weights. Both upstream and downstream weights are constructed from the perspective of Source sectors
in the x-axis.
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Figure A2: Countries in the sample by climatic zone

Notes: The map represents the countries in the sample divided by climatic zones, defined as terciles of
the average annual temperature from 1970 through 2020. The classification is implemented in order to
compute heterogeneous treatment effects as reported in Figure A3.
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Figure A3: Heterogeneity in the GVA response to changes in temperature distribution

(a) Income groups (b) Climate terciles

Notes: The figure shows the (standardized) coefficients associated with the response of sectoral GVA per
capita growth rate to an increase in the sum of average daily temperature in different sub-samples split by
income groups according to the World Economic Outlook (IMF, 2022) and by climate split into terciles
using the long-run average temperature. All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A4: Abnormal weather realizations using 1st and 99th percentiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of days
above the 99th and below the 1st percentile of the daily distribution in temperature (Panel (a)) and
in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals with standard errors clustered at the country-level.

Figure A5: Abnormal weather realizations using 10th and 90th percentiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of days
above the 90th and below the 10th percentile of the daily distribution in temperature (Panel (a)) and
in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals with standard errors clustered at the country-level.
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Figure A6: Robustness: Abnormal temperature realizations

(a) Balanced panel (b) Excluding “large” countries

Notes: The figure shows the (standardized) regression estimates for the country-average number of days
above the 95th and below the 5th percentile of the daily distribution in temperature using a sector-country
balanced panel (Panel (a)) and excluding large countries (Brazil, China, India, Russia, US) (Panel (b)).
All sector-specific coefficients are estimated jointly in a stacked regression model fully saturated with
country-sector and sector-year fixed effects. Bins represent the 90% confidence intervals around point
estimates.
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Figure A7: Abnormal weather realizations from time-varying climate norms using 5th and
95th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the 90th

and below the 10th percentile of the daily distribution in temperature (Panels (a-c-e)) and in precipitation
(Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-year). The estima-
tion sample starts from 1990. All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals with standard errors clustered at the country-level.
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Figure A8: Abnormal weather realizations from time-varying climate norms using 10th

and 90th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the 90th

and below the 10th percentile of the daily distribution in temperature (Panels (a-c-e)) and in precipitation
(Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-year). The estima-
tion sample starts from 1990. All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals with standard errors clustered at the country-level.
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Figure A9: Abnormal weather realizations from time-varying climate norms using 1st and
99th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the 99th

and below the 1st percentile of the daily distribution in temperature (Panels (a-c-e)) and in precipitation
(Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-year). The estima-
tion sample starts from 1990. All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects. Bins represent the 90% confidence
intervals with standard errors clustered at the country-level.
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Figure A10: Extreme drought and wetness prevalence and sectoral production

Notes: The figure shows the (standardized) coefficients from a stacked multi-sector regression model where
changes in dryness and wetness variables are sector-specific. All sector-specific coefficients are estimated
jointly in a stacked regression model fully saturated with country-sector and sector-year fixed effects. Bins
represent the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A11: Tropical cyclone intensity and sectoral production

Notes: The figure shows the (standardized) sector-specific coefficients from a stacked multi-sector re-
gression model where the main regressor is changes in damage intensity measure of tropical cyclones
constructed from wind speed from Kunze (2021). All sector-specific coefficients are estimated jointly in a
stacked regression model fully saturated with country-sector and sector-year fixed effects and controlling
for country-specific linear time trends. Bins represent the 90% confidence intervals with standard errors
clustered at the country-level.

56



Figure A12: Domestic abnormally hot temperature shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic shocks, using the average number of days above the 95th percentile of the daily temperature
distribution. Domestic shocks are constructed as the average weather shock in the other sectors in the same
country as the sector of interest weighted by the average of upstream and downstream interdependence
with each sector. All sector-specific coefficients are estimated jointly in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting for sector-specific responses to
temperature realizations below the 5th percentile and sector-specific responses to precipitation realizations
below the 5th and above the 95th percentile. Bins represent the 90% confidence intervals with standard
errors clustered at the country-level.
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Figure A13: Robustness: Spatial correlation

(a) Subregion-by-year FE (b) Continent-by-year FE

Notes: The figure shows the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks, using the average number of days above the 95th percentile of the daily
temperature distribution. Domestic shocks are constructed as the average weather shock in the other
sectors in the same country as the sector of interest weighted by the average of upstream and down-
stream interdependence with each sector. Symmetrically, foreign shocks are constructed as the average
weather shock in the other sectors in all the other countries weighted by the average of upstream and
downstream interdependence with each sector. All sector-specific coefficients are estimated jointly in a
stacked regression model fully saturated with country-sector and sector-year fixed effects and account-
ing for sector-specific responses to temperature realizations below the 5th percentile and sector-specific
responses to precipitation realizations below the 5th and above the 95th percentile. Panel (a) shows the
estimates in a regression that additionally accounts for subregion-by-year fixed effects, Panel (b) shows
the estimates in a regression that additionally accounts for continent-by-year fixed effects. Bins represent
the 90% confidence intervals around point estimates.
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Figure A14: Robustness: Domestic and foreign shocks

(a) Accounting for incomplete shares (b) Balanced panel

(c) Excluding “large” countries (d) After 1990 sample

Notes: The figure shows the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks, using the average number of days above the 95th percentile of the daily tem-
perature distribution. Domestic shocks are constructed as the average weather shock in the other sectors
in the same country as the sector of interest weighted by the average of upstream and downstream inter-
dependence with each sector. Symmetrically, foreign shocks are constructed as the average weather shock
in the other sectors in all the other countries weighted by the average of upstream and downstream inter-
dependence with each sector. All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects and accounting for sector-specific
responses to temperature realizations below the 5th percentile and sector-specific responses to precipita-
tion realizations below the 5th and above the 95th percentile. Panel (a) shows the estimates controlling for
sector-year FE interacted with the sum of exposure shares. Panel (b) uses sector-country balanced panel,
Panel (c) excludes large countries (Brazil, China, India, Russia, US), Panel (d) uses only the sample after
1990. Bins represent the 90% confidence intervals around point estimates.
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Figure A15: Network abnormally hot temperature shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks distinguished between upstream and downstream, using the average number
of days above the 95th percentile of the daily temperature distribution. Domestic upstream (resp. down-
stream) shocks are constructed as the average weather shock in the other sectors in the same country as
the sector of interest weighted by the upstream (resp. downstream) interdependence with each sector.
Symmetrically, foreign upstream (resp. downstream) shocks are constructed as the average weather shock
in other sectors abroad weighted by the upstream (resp. downstream) interdependence with each sector.
The coefficients are estimated in a specification that jointly estimates all sector-specific coefficients in a
stacked regression model fully saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th percentile and sector-specific re-
sponses to precipitation realizations below the 5th and above the 95th percentile. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A16: Local projections of domestic and foreign heat shocks on total value added

(a) Domestic heat shock (b) Foreign heat shock

Notes: Panels impulse response function of per capita total value added growth rate to a 1 SD increase
in heat shocks estimated in a stacked regression model with country and year fixed effects and accounting
for abnormally cold temperature shocks (below the 5th percentile) and precipitation realizations below
the 5th and above the 95th percentile. Horizon 0 is the year of the shock. Shaded areas represent the 90%
confidence intervals with standard errors clustered at the country level. Panel (a) shows the estimates for
domestic shocks, and Panel (b) shows the estimates for foreign shocks.
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Figure A17: Local projections of own abnormally hot temperature shocks on sectoral
production

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth rate
to a 1 SD increase in the abnormally hot temperature shocks estimated in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting for sector-specific responses to
domestic and foreign abnormally hot temperature shocks, to abnormally cold temperature shocks (below
the 5th percentile) and to precipitation realizations below the 5th and above the 95th percentile. Horizon
0 is the year of the shock. Shaded areas represent the 90% confidence intervals with standard errors
clustered at the country-level.
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Figure A18: Local projections of foreign abnormally hot temperature shocks on sectoral
production

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth rate
to a 1 SD increase in the foreign abnormally hot temperature shocks estimated in a stacked regression
model fully saturated with country-sector and sector-year fixed effects and accounting for sector-specific
responses to direct and domestic abnormally hot temperature shocks, to abnormally cold temperature
shocks (below the 5th percentile) and to precipitation realizations below the 5th and above the 95th

percentile. Horizon 0 is the year of the shock. Shaded areas represent the 90% confidence intervals with
standard errors clustered at the country-level.
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Figure A19: Direct and network drought shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks, using changes in extreme drought prevalence. Domestic shocks are con-
structed as the average shock in the other sectors in the same country as the sector of interest weighted
by the average of upstream and downstream interdependence with each sector. Symmetrically, foreign
shocks are constructed as the average shock in the other sectors in all the other countries weighted by the
average of upstream and downstream interdependence with each sector. All sector-specific coefficients are
estimated jointly in a stacked regression model fully saturated with country-sector and sector-year fixed
effects. Bins represent the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A20: Direct and network cyclones shocks and sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks and
domestic and foreign shocks, using the changes in the wind speed measure by Kunze (2021). Domestic
shocks are constructed as the average shock in the other sectors in the same country as the sector of interest
weighted by the average of upstream and downstream interdependence with each sector. Symmetrically,
foreign shocks are constructed as the average weather shock in the other sectors in all the other countries
weighted by the average of upstream and downstream interdependence with each sector. All sector-specific
coefficients are estimated jointly in a stacked regression model fully saturated with country-sector and
sector-year fixed effects. Bins represent the 90% confidence intervals with standard errors clustered at
the country-level.
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Figure A21: Average annual relative sectoral GVA pc losses (%) due to recent warming

(a) Local sectoral heat shocks (b) Accounting for indirect heat shocks

Notes: The figure shows average annual losses (in red) and gains (in blue) in sectoral per capita GVA due
to abnormally hot temperature shocks in the 2001-2020 period compared to a counterfactual in which heat
shocks evolved linearly from their 1970-2000 averages. The two panels compare the average annual relative
loss (% of per capita GVA) using sector-specific local heat shocks estimates (Panel a) and accounting for
shocks in other partner sectors (Panel b) estimated from Equation (8). Averages are obtained from 1000
bootstrap estimations. In panel a), only estimates in Agriculture are statistically significant at 95% level.
Table A12 reports the estimated average losses at the country-sector level significant at the 95% level.
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A.2 Tables

Table A1: Countries and year-sectors in final sample

Country Number of years-sectors Country Number of years-sectors Country Number of years-sectors
Afghanistan 300 French Polynesia 300 Nigeria 300
Albania 300 Gabon 300 North Korea 200
Algeria 300 Gambia 300 North Macedonia 180
Andorra 300 Georgia 180 Norway 300
Angola 300 Germany 300 Oman 300
Antigua and Barbuda 300 Ghana 300 Pakistan 300
Argentina 300 Greece 300 Palestine 180
Armenia 180 Greenland 300 Panama 300
Aruba 300 Grenada 300 Papua New Guinea 300
Australia 300 Guatemala 300 Paraguay 300
Austria 300 Guinea 300 Peru 300
Azerbaijan 180 Guyana 300 Philippines 300
Bahamas 296 Haiti 300 Poland 300
Bahrain 300 Honduras 300 Portugal 300
Bangladesh 300 Hungary 300 Qatar 300
Barbados 300 Iceland 300 Republic of the Congo 300
Belarus 180 India 300 Romania 300
Belgium 300 Indonesia 300 Russia 180
Belize 300 Iran 300 Rwanda 300
Benin 300 Iraq 300 Samoa 300
Bermuda 300 Ireland 300 San Marino 300
Bhutan 300 Israel 300 Saudi Arabia 300
Bolivia 300 Italy 300 Senegal 300
Bosnia and Herzegovina 180 Jamaica 300 Serbia 180
Botswana 300 Japan 300 Seychelles 300
Brazil 300 Jordan 300 Sierra Leone 300
British Virgin Islands 300 Kazakhstan 180 Singapore 300
Brunei 300 Kenya 300 Slovakia 180
Bulgaria 300 Kuwait 276 Slovenia 180
Burkina Faso 300 Kyrgyzstan 180 Somalia 300
Burundi 300 Laos 300 South Africa 300
Cabo Verde 300 Latvia 180 South Korea 300
Cambodia 300 Lebanon 300 South Sudan 72
Cameroon 300 Lesotho 300 Spain 300
Canada 300 Liberia 300 Sri Lanka 300
Cayman Islands 300 Libya 300 Sudan 72
Central African Republic 300 Liechtenstein 300 Suriname 300
Chad 300 Lithuania 180 Swaziland 300
Chile 300 Luxembourg 300 Sweden 300
China 300 Madagascar 300 Switzerland 300
Colombia 300 Malawi 300 Syria 300
Comoros 300 Malaysia 300 São Tomé and Príncipe 300
Costa Rica 300 Maldives 297 Tajikistan 178
Croatia 180 Mali 300 Tanzania 300
Cuba 300 Malta 300 Thailand 300
Cyprus 300 Mauritania 300 Togo 300
Czechia 180 Mauritius 300 Trinidad and Tobago 300
Côte d’Ivoire 300 Moldova 180 Tunisia 300
Democratic Republic of the Congo 300 Monaco 250 Turkey 300
Denmark 300 Mongolia 300 Turkmenistan 180
Djibouti 300 Montenegro 180 Uganda 300
Dominican Republic 300 Morocco 300 Ukraine 180
Ecuador 300 Mozambique 300 United Arab Emirates 300
Egypt 300 Myanmar 300 United Kingdom 300
El Salvador 300 México 300 United States 300
Equatorial Guinea 300 Namibia 300 Uruguay 300
Eritrea 126 Nepal 300 Uzbekistan 180
Estonia 180 Netherlands 300 Vanuatu 300
Ethiopia 180 New Caledonia 300 Venezuela 300
Fiji 300 New Zealand 300 Vietnam 300
Finland 300 Nicaragua 300 Yemen 186
France 300 Niger 300 Zambia 300

Zimbabwe 300

Total 51,129
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Table A2: Mapping between EORA26 sectors and UNSD industries

EORA26 Sector UNSD industry
Agriculture Agriculture, hunting, forestry, fishing (ISIC A-B)
Fishing Agriculture, hunting, forestry, fishing (ISIC A-B)
Mining and Quarrying Mining, Manufacturing, Utilities (ISIC C-E)
Electricity, Gas and Water Mining, Manufacturing, Utilities (ISIC C-E)
Food & Beverages Mining, Manufacturing, Utilities (ISIC C-E)
Textiles and Wearing Apparel Mining, Manufacturing, Utilities (ISIC C-E)
Wood and Paper Mining, Manufacturing, Utilities (ISIC C-E)
Petroleum, Chemical and Non-Metallic Mineral Products Mining, Manufacturing, Utilities (ISIC C-E)
Metal Products Mining, Manufacturing, Utilities (ISIC C-E)
Electrical and Machinery Mining, Manufacturing, Utilities (ISIC C-E)
Transport Equipment Mining, Manufacturing, Utilities (ISIC C-E)
Other Manufacturing Mining, Manufacturing, Utilities (ISIC C-E)
Recycling Mining, Manufacturing, Utilities (ISIC C-E)
Construction Construction (ISIC F)
Maintenance and Repair Construction (ISIC F)
Wholesale Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Retail Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Hotels and Restaurants Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Transport Transport, storage and communication (ISIC I)
Post and Telecommunications Transport, storage and communication (ISIC I)
Financial Intermediation and Business Activities Other Activities (ISIC J-P)
Public Administration Other Activities (ISIC J-P)
Education, Health and Other Services Other Activities (ISIC J-P)
Private Households Other Activities (ISIC J-P)
Others Other Activities (ISIC J-P)
Re-export & Re-import Other Activities (ISIC J-P)

Notes: Author’s classification based on Kunze (2021) and adapted to six UNSD sectors.
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Table A3: Classification of countries by income group

Group Countries
Advanced Economies Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia,
Lithuania, Luxembourg, Malta, Netherlands, New Zealand, Norway, Portugal,

Puerto Rico, San Marino, Singapore, Slovak Republic, Slovenia,
Spain, Sweden, Switzerland, United Kingdom, United States

Emerging Market Economies Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia,
Azerbaijan, The Bahamas, Bahrain, Barbados, Belarus, Belize, Bosnia and Herzegovina,

Botswana, Brazil, Bulgaria, Cabo Verde, Chile, China, Colombia,
Costa Rica, Croatia, Dominica, Dominican Republic, Ecuador,

Egypt, El Salvador, Equatorial Guinea, Fiji, Gabon, Georgia, Grenada,
Guatemala, Guyana, Hungary, India, Indonesia, Iran, Iraq, Jamaica,

Jordan, Kazakhstan, Kuwait, Lebanon, Libya, Malaysia, Maldives, Marshall Islands,
Mauritius, Mexico, Montenegro, Morocco, Namibia, Nauru, North Macedonia, Oman,

Pakistan, Palau, Panama, Paraguay, Peru, Philippines, Poland, Qatar, Romania, Russia,
Samoa, Saudi Arabia, Serbia, Seychelles, South Africa, Sri Lanka, St. Kitts and Nevis,

St. Lucia, St. Vincent and the Grenadines, Suriname, Swaziland, Syria, Thailand,
Timor-Leste, Tonga, Trinidad and Tobago, Tunisia, Turkey,

Turkmenistan, Tuvalu, Ukraine, United Arab Emirates, Uruguay, Vanuatu, Venezuela

Low-Income Developing Countries Afghanistan, Bangladesh, Benin, Bhutan, Bolivia, Burkina Faso,
Burundi, Cambodia, Cameroon, Central African Republic, Chad, Comoros,

Democratic Republic of the Congo, Republic of Congo,Côte d’Ivoire, Djibouti, Eritrea,
Ethiopia, The Gambia, Guinea, Guinea-Bissau, Haiti,Honduras, Kenya, Kiribati,

Kyrgyz Republic, Lao P.D.R., Lesotho, Liberia, Madagascar, Malawi, Mali,
Mauritania, Moldova, Mongolia, Mozambique, Myanmar, Nepal,
Nicaragua, Niger, Nigeria, Papua New Guinea, Rwanda, Senegal,

Sierra Leone, Solomon Islands, Somalia, South Sudan, Sudan, São Tomé and Príncipe,
Tajikistan, Tanzania, Togo, Uganda, Uzbekistan, Vietnam, Yemen,

Zambia, Zimbabwe

Notes: Author’s classification based on IMF World Economic Outlook (IMF, 2022) An anomaly is defined as the sum of the monthly deviations from the
monthly 25-year moving average, distinguishing between positive and negative.
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Table A4: Summary statistics on weather shocks

N mean sd min max

Temperature and precipitation
Temperature above 90th percentile (days/year) 8,548 37.487 23.610 0 222
Temperature below 10th percentile (days/year) 8,548 35.907 21.023 0 210
Precipitation above 90th percentile (days/year) 8,548 36.458 9.907 7 111
Precipitation below 10th percentile (days/year) 8,548 32.390 16.367 0 114

Temperature above 99th percentile (days/year) 8,548 3.851 6.145 0 94
Temperature below 1th percentile (days/year) 8,548 3.563 4.892 0 54
Precipitation above 99th percentile (days/year) 8,548 3.659 2.539 0 29
Precipitation below 1th percentile (days/year) 8,548 2.474 3.187 0 32

Negative temperature anomaly (◦C) 7,817 3.274 3.353 0.00005 31.413
Positive temperature anomaly (◦C) 7,817 6.33 4.728 0.0007 32.898
Negative precipitation anomaly (mm) 7,817 6.980 5.308 0.009 48.944
Positive precipitation anomaly (mm) 7,817 6.836 6.322 0.00008 89.33

Notes: Abnormal weather realizations and anomalies are measured in levels.
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Table A5: Im-Pesaran-Shin unit-root test for main variables

Statistic p-value

GVA growth rate -6.072 0.000
Abnormally dry precipitation shock (p1) -6.782 0.000
Abnormally dry precipitation shock (p5) -6.464 0.000
Abnormally dry precipitation shock (p10) -6.456 0.000
Abnormally wet precipitation shock (p90) -6.571 0.000
Abnormally wet precipitation shock (p95) -6.600 0.000
Abnormally wet precipitation shock (p99) -6.832 0.000
Abnormally cold temperature shock (p1) -6.541 0.000
Abnormally cold temperature shock (p5) -6.134 0.000
Abnormally cold temperature shock (p10) -6.128 0.000
Abnormally hot temperature shock (p90) -6.156 0.000
Abnormally hot temperature shock (p95) -6.258 0.000
Abnormally hot temperature shock (p99) -6.575 0.000

Notes: Null hypothesis of the unit-root test by Im et al. (2003) is that
all panels contain unit roots against the alternative hypothesis that some
panels are stationary. In performing the test, I do not include lags and
remove cross-sectional means and include a time trend in the estimated
equation. The test on the growth rate is performed on a balanced sector-
country-year panel, whereas test on weather variables is performed on a
balanced country-year panel using population-weighted weather variables.
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Table A6: Sector-specific impact of positive annual temperature and precipitation
changest

GVA per capita growth rate

(1) (2) (3)
Temperature

Agriculture, hunting, forestry, fishing -0.00676∗∗ -0.00726∗∗ -0.00773∗∗
(0.00297) (0.00305) (0.00300)

Construction 0.000787 0.000861 0.000352
(0.00401) (0.00403) (0.00403)

Mining, Manufacturing, Utilities 0.00229 0.00205 0.00162
(0.00251) (0.00253) (0.00256)

Other Activities 0.000665 0.000697 0.000157
(0.00183) (0.00184) (0.00183)

Transport, storage and communication 0.00410 0.00423 0.00370
(0.00266) (0.00271) (0.00272)

Wholesale, retail trade, restaurants and hotels 0.00284 0.00266 0.00220
(0.00260) (0.00264) (0.00266)

Precipitation
Agriculture, hunting, forestry, fishing 0.0117∗∗∗ 0.0122∗∗∗ 0.0117∗∗∗

(0.00291) (0.00299) (0.00293)

Construction -0.00378 -0.00349 -0.00380
(0.00337) (0.00331) (0.00332)

Mining, Manufacturing, Utilities -0.000347 0.000191 -0.000257
(0.00278) (0.00285) (0.00285)

Other Activities -0.000128 -0.00000690 -0.000466
(0.00171) (0.00177) (0.00175)

Transport, storage and communication -0.00514∗∗ -0.00460∗ -0.00505∗∗
(0.00233) (0.00240) (0.00238)

Wholesale, retail trade, restaurants and hotels -0.000100 0.000159 -0.000298
(0.00209) (0.00212) (0.00213)

GVA growth ratet−1 0.0618∗∗ 0.0399
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 51273 50162 50162
adj. R2 0.043 0.046 0.060

Notes: The table reports the sector-specific coefficients associated with changes in annual temperature and
precipitation distributions. Standard errors are clustered at the country-level. A graphical representation
of the coefficients in column (2) is reported in Figure 1. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A7: Sector-specific impact of annual temperature and precipitation changes

GVA per capita growth rate

(1) (2) (3)
Temperature Changes

Agriculture, hunting, forestry, fishing -0.0351∗∗ -0.0383∗∗ -0.0379∗∗
(0.0144) (0.0149) (0.0149)

Construction 0.0402∗∗∗ 0.0360∗∗ 0.0362∗∗
(0.0153) (0.0157) (0.0155)

Mining, Manufacturing, Utilities 0.0220∗ 0.0189 0.0193
(0.0112) (0.0119) (0.0118)

Other Activities 0.00974 0.00980 0.0101
(0.00950) (0.00978) (0.00973)

Transport, storage and communication 0.0230∗ 0.0200 0.0205
(0.0124) (0.0127) (0.0126)

Wholesale, retail trade, restaurants and hotels 0.0217 0.0197 0.0201
(0.0135) (0.0137) (0.0137)

Precipitation Changes
Agriculture, hunting, forestry, fishing 0.0405∗∗∗ 0.0417∗∗∗ 0.0409∗∗∗

(0.0114) (0.0119) (0.0117)

Construction -0.00187 0.00110 0.000722
(0.0129) (0.0129) (0.0129)

Mining, Manufacturing, Utilities 0.0130 0.0148 0.0147
(0.0103) (0.0106) (0.0106)

Other Activities 0.00275 0.00302 0.00277
(0.00532) (0.00549) (0.00545)

Transport, storage and communication -0.00857 -0.00713 -0.00744
(0.00821) (0.00867) (0.00851)

Wholesale, retail trade, restaurants and hotels -0.00305 -0.00207 -0.00255
(0.00839) (0.00846) (0.00836)

GVA growth ratet−1 0.0616∗∗ 0.0400
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 50223 49133 49133
adj. R2 0.044 0.047 0.060

Notes: The table reports the (standardized) sector-specific coefficients associated with positive and
negative changes in annual temperature and precipitation distributions. Standard errors are clustered
at the country-level. A graphical representation of the coefficients in column (2) is reported in Figure
2. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Heterogeneous effect of annual changes in temperature and precipitation by
income groups.

GVA per capita growth rate

(1) (2) (3)

Temperature
Advanced Economies
Agriculture 0.0272 0.0287∗ 0.0284∗

(0.0176) (0.0153) (0.0151)
Construction 0.0668∗∗∗ 0.0653∗∗∗ 0.0651∗∗∗

(0.0198) (0.0170) (0.0167)
Mining, Manufacturing, Utilities 0.0153∗∗ 0.0176∗∗ 0.0180∗∗

(0.00689) (0.00886) (0.00856)
Other Activities 0.00399 0.00168 0.00196

(0.00624) (0.00571) (0.00588)
Transport, storage and communication 0.00634 0.00756 0.00818

(0.0104) (0.0106) (0.0108)
Wholesale, retail trade, restaurants and hotels 0.0223∗∗∗ 0.0176∗∗ 0.0177∗∗

(0.00844) (0.00720) (0.00716)

Emerging Economies
Agriculture -0.0804∗∗∗ -0.0844∗∗∗ -0.0845∗∗∗

(0.0191) (0.0202) (0.0202)
Construction 0.0482 0.0506 0.0501

(0.0317) (0.0331) (0.0328)
Mining, Manufacturing, Utilities 0.0339 0.0306 0.0298

(0.0220) (0.0230) (0.0228)
Other Activities 0.0295 0.0309 0.0301

(0.0206) (0.0213) (0.0212)
Transport, storage and communication 0.0440∗ 0.0395 0.0389

(0.0254) (0.0261) (0.0260)
Wholesale, retail trade, restaurants and hotels 0.0325 0.0325 0.0319

(0.0284) (0.0284) (0.0285)
Low-Income Developing Countries
Agriculture -0.0762∗∗ -0.0888∗∗ -0.0852∗∗

(0.0354) (0.0380) (0.0384)
Construction 0.0240 -0.00530 -0.00178

(0.0338) (0.0314) (0.0315)
Mining, Manufacturing, Utilities 0.0305 0.0164 0.0203

(0.0288) (0.0330) (0.0331)
Other Activities -0.00853 -0.00845 -0.00471

(0.0199) (0.0188) (0.0189)
Transport, storage and communication 0.00991 -0.00175 0.00231

(0.0206) (0.0204) (0.0200)
Wholesale, retail trade, restaurants and hotels -0.0119 -0.0172 -0.0128

(0.0331) (0.0350) (0.0347)

Precipitation
Advanced Economies
Agriculture 0.0650 0.0608 0.0605

(0.0446) (0.0450) (0.0442)
Construction 0.0139 0.00437 0.00500

(0.0212) (0.0203) (0.0200)
Mining, Manufacturing, Utilities 0.0107 0.0179 0.0173

(0.0158) (0.0166) (0.0163)
Other Activities -0.00760 -0.0148∗ -0.0143∗

(0.00644) (0.00756) (0.00739)
Transport, storage and communication -0.0101 -0.0133 -0.0130

(0.0134) (0.0143) (0.0137)
Wholesale, retail trade, restaurants and hotels -0.00675 -0.0141 -0.0138

(0.0133) (0.0126) (0.0123)
Emerging Economies
Agriculture 0.0225∗ 0.0222∗ 0.0217

(0.0132) (0.0133) (0.0132)
Construction -0.0121 -0.00820 -0.00856

(0.0196) (0.0190) (0.0188)
Mining, Manufacturing, Utilities 0.00487 0.00631 0.00593

(0.00768) (0.00791) (0.00788)
Other Activities 0.0120 0.0126∗ 0.0124

(0.00758) (0.00762) (0.00751)
Transport, storage and communication -0.00251 -0.00151 -0.00166

(0.00680) (0.00675) (0.00664)
Wholesale, retail trade, restaurants and hotels 0.00435 0.00520 0.00505

(0.00955) (0.00969) (0.00945)
Low-Income Developing Countries
Agriculture 0.0466∗∗ 0.0488∗∗ 0.0477∗∗

(0.0195) (0.0204) (0.0203)
Construction 0.0233 0.0234 0.0236

(0.0293) (0.0301) (0.0301)
Mining, Manufacturing, Utilities -0.0111 -0.00924 -0.00957

(0.0144) (0.0151) (0.0149)
Other Activities -0.0177 -0.0153 -0.0222

(0.0272) (0.0273) (0.0276)
Transport, storage and communication -0.00977 -0.00897 -0.00955

(0.0241) (0.0255) (0.0251)
Wholesale, retail trade, restaurants and hotels -0.0260 -0.0237 -0.0247

(0.0216) (0.0216) (0.0215)
GVA growth ratet−1 0.0566∗∗ 0.0344

(0.0280) (0.0272)
Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 46243 45235 45235
adj. R2 0.047 0.050 0.064

Notes: The table reports the (standardized) income group-sector-specific coefficients associated with
changes in annual sum of daily temperature and precipitation. A graphical representation of the
coefficients associated with temperature is reported in Figure A3a. Standard errors are clustered at the
country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Heterogeneous effect of annual changes in temperature and precipitation by
climate terciles.

GVA per capita growth rate

(1) (2) (3)

Temperature
Cold Climate
Agriculture -0.0105 -0.0128 -0.0138

(0.0173) (0.0176) (0.0176)
Construction 0.0769∗∗∗ 0.0680∗∗∗ 0.0675∗∗∗

(0.0196) (0.0194) (0.0193)
Mining, Manufacturing, Utilities 0.0193 0.0174 0.0169

(0.0128) (0.0140) (0.0138)
Other Activities 0.0167 0.0170 0.0166

(0.0126) (0.0127) (0.0126)
Transport, storage and communication 0.0210 0.0160 0.0157

(0.0147) (0.0148) (0.0147)
Wholesale, retail trade, restaurants and hotels 0.0392∗∗ 0.0353∗∗ 0.0351∗∗

(0.0172) (0.0174) (0.0174)

Temperate Climate
Agriculture -0.101∗∗∗ -0.103∗∗∗ -0.0998∗∗∗

(0.0312) (0.0319) (0.0321)
Construction -0.0162 -0.0108 -0.00972

(0.0364) (0.0376) (0.0371)
Mining, Manufacturing, Utilities 0.0357 0.0315 0.0330

(0.0259) (0.0263) (0.0263)
Other Activities 0.00961 0.00898 0.00997

(0.0179) (0.0183) (0.0186)
Transport, storage and communication 0.0488∗ 0.0509∗ 0.0520∗

(0.0283) (0.0291) (0.0291)
Wholesale, retail trade, restaurants and hotels 0.0135 0.0166 0.0173

(0.0295) (0.0287) (0.0290)
Hot Climate
Agriculture -0.0413 -0.0501 -0.0470

(0.0396) (0.0428) (0.0425)
Construction -0.0491 -0.0471 -0.0438

(0.0321) (0.0323) (0.0321)
Mining, Manufacturing, Utilities 0.0112 0.00361 0.00781

(0.0308) (0.0320) (0.0319)
Other Activities -0.0260 -0.0274 -0.0242

(0.0184) (0.0195) (0.0194)
Transport, storage and communication -0.0125 -0.0157 -0.0118

(0.0203) (0.0207) (0.0203)
Wholesale, retail trade, restaurants and hotels -0.0555∗∗ -0.0585∗∗ -0.0552∗∗

(0.0235) (0.0234) (0.0234)

Precipitation
Cold Climate
Agriculture 0.0389∗ 0.0395∗ 0.0405∗∗

(0.0205) (0.0207) (0.0205)
Construction -0.00982 -0.00897 -0.00710

(0.0179) (0.0177) (0.0176)
Mining, Manufacturing, Utilities 0.0179 0.0213 0.0234∗

(0.0137) (0.0131) (0.0131)
Other Activities 0.00360 -0.000150 0.00119

(0.00786) (0.00783) (0.00775)
Transport, storage and communication -0.00287 0.000371 0.00132

(0.0151) (0.0157) (0.0151)
Wholesale, retail trade, restaurants and hotels -0.0134 -0.0154 -0.0146

(0.0139) (0.0136) (0.0134)
Temperate Climate
Agriculture 0.0417∗ 0.0428∗ 0.0411∗

(0.0216) (0.0224) (0.0222)
Construction 0.00512 0.00888 0.00813

(0.0180) (0.0173) (0.0174)
Mining, Manufacturing, Utilities 0.0151 0.0170 0.0163

(0.0156) (0.0158) (0.0159)
Other Activities 0.0114 0.0127 0.0118

(0.00801) (0.00808) (0.00808)
Transport, storage and communication 0.0113 0.0131 0.0122

(0.0104) (0.0108) (0.0108)
Wholesale, retail trade, restaurants and hotels 0.0208∗ 0.0218∗ 0.0211∗

(0.0122) (0.0127) (0.0125)
Hot Climate
Agriculture 0.0271∗ 0.0279∗ 0.0277∗

(0.0156) (0.0164) (0.0162)
Construction -0.0193 -0.0146 -0.0154

(0.0248) (0.0251) (0.0249)
Mining, Manufacturing, Utilities 0.00861 0.00897 0.00857

(0.0209) (0.0218) (0.0218)
Other Activities -0.00974 -0.00862 -0.00881

(0.0101) (0.0106) (0.0105)
Transport, storage and communication -0.0319∗∗ -0.0314∗ -0.0313∗

(0.0153) (0.0163) (0.0159)
Wholesale, retail trade, restaurants and hotels -0.0296∗ -0.0268∗ -0.0274∗

(0.0154) (0.0155) (0.0154)
GVA growth ratet−1 0.0620∗∗ 0.0404

(0.0264) (0.0258)
Sector FE ✓ ✓ ✓
Country FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 50223 49133 49133
adj. R2 0.044 0.047 0.060

Notes: The table reports the (standardized) climate tercile-sector-specific coefficients associated with
binary variables indicating positive changes in annual sum of daily temperature and precipitation.
A graphical representation of the coefficients associated with temperature is reported in Figure A3a.
Standard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A10: Dryness and wetness shocks and sectoral GVA.

Average dryness Extreme drought prevalence Extreme wetness prevalence
(1) (2) (3)

Agriculture, hunting, forestry, fishing -0.119∗∗∗ -0.0733∗∗∗ -0.00346
(0.0197) (0.0126) (0.0116)

Construction 0.0184 0.0281∗∗ -0.00293
(0.0156) (0.0135) (0.0133)

Mining, Manufacturing, Utilities 0.000256 0.00354 0.00218
(0.0162) (0.0102) (0.00818)

Other Activities 0.00204 -0.000846 0.00545
(0.00813) (0.00459) (0.00474)

Transport, storage and communication 0.0184 0.0143 -0.00588
(0.0119) (0.00916) (0.00785)

Wholesale, retail trade, restaurants and hotels 0.00414 -0.00304 0.00900
(0.0117) (0.00846) (0.00869)

GVA growth ratet−1 0.0687∗∗ 0.0605∗∗ 0.0605∗∗
(0.0282) (0.0263) (0.0263)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓

N 35911 49578 49578
adj. R2 0.049 0.047 0.046

Notes: The table reports the (standardized) sector-specific coefficients associated with the three measures in first difference constructed from the SPEI
database. A graphical representation of the coefficients is reported in Figure A10. Column (1) uses a measure of average dryness (as the average of
monthly negative realizations of SPEI in each country), column (2) uses extreme drought prevalence as the maximum share of grid-months with extreme
drought conditions (SPEI<-2); column (3) uses extreme wetness as the maximum share of grid-months with extreme wetness conditions (SPEI>2) in a
country in a year. Standard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A11: Tropical cyclones and sectoral GVA.

GVA per capita growth rate

(1) (2) (3)

Agriculture, hunting, forestry, fishing -0.0288∗∗ -0.0297∗∗ -0.0315∗∗∗
(0.0125) (0.0126) (0.0119)

Construction -0.00735 -0.00749 -0.00717
(0.00642) (0.00648) (0.00651)

Mining, Manufacturing, Utilities -0.000445 -0.000488 0.000405
(0.00723) (0.00737) (0.00767)

Other Activities -0.00500∗ -0.00504∗ -0.00603∗∗
(0.00278) (0.00282) (0.00289)

Transport, storage and communication -0.00101 -0.00107 -0.000670
(0.00404) (0.00410) (0.00376)

Wholesale, retail trade, restaurants and hotels -0.00444 -0.00463 -0.00412
(0.00641) (0.00637) (0.00657)

GVA growth ratet−1 0.0262 0.0417
(0.0259) (0.0264)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓ ✓
Country quadratic time trends ✓

N 44167 44167 44167
adj. R2 0.053 0.053 0.053

Notes: The table reports the sector-specific (standardized) coefficients associated with the changes
in wind speed as constructed in Kunze (2021). A graphical representation of the coefficients esti-
mated in column (1) is reported in Figure A11. Standard errors are clustered at the country-level.
Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Tropical cyclones data are available until
2015.
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Table A12: Sector-country damages (% loss GVA per capita) significant at 95% level
Country Sector Average loss 95% CI Country Sector Average loss 95% CI Country Sector Average loss 95% CI
Afghanistan Agriculture 0.48 [ 0.14 0.81 ] Papua New Guinea Agriculture 0.83 [ 0.38 1.31 ] Monaco Construction 0.43 [ 0.05 0.82 ]
Albania Agriculture 0.42 [ 0.06 0.79 ] Philippines Agriculture 0.73 [ 0.31 1.18 ] Mongolia Construction 0.90 [ 0.19 1.64 ]
Algeria Agriculture 0.22 [ 0.01 0.43 ] Poland Agriculture 0.29 [ 0.04 0.57 ] Montenegro Construction 0.94 [ 0.14 1.73 ]
Andorra Agriculture 0.17 [ 0.08 0.28 ] Romania Agriculture 0.39 [ 0.00 0.79 ] Morocco Construction 0.87 [ 0.21 1.56 ]
Angola Agriculture 0.91 [ 0.18 1.66 ] Rwanda Agriculture 0.94 [ 0.06 1.82 ] Mozambique Construction 0.90 [ 0.22 1.61 ]
Argentina Agriculture 0.44 [ 0.04 0.86 ] San Marino Agriculture 0.35 [ 0.09 0.60 ] Myanmar Construction 0.58 [ 0.13 1.04 ]
Australia Agriculture 0.41 [ 0.06 0.77 ] Saudi Arabia Agriculture 0.84 [ 0.16 1.54 ] Namibia Construction 0.50 [ 0.01 1.02 ]
Austria Agriculture 0.37 [ 0.15 0.59 ] Senegal Agriculture 0.14 [ 0.01 0.27 ] Nepal Construction 0.24 [ 0.04 0.44 ]
Azerbaijan Agriculture -0.70 [ -1.35 -0.07 ] Serbia Agriculture -0.09 [ -0.17 -0.01 ] Netherlands Construction 1.21 [ 0.23 2.17 ]
Bahrain Agriculture 0.17 [ 0.07 0.28 ] Singapore Agriculture 0.58 [ 0.17 1.00 ] New Zealand Construction 0.34 [ 0.09 0.61 ]
Bangladesh Agriculture 0.45 [ 0.11 0.79 ] Slovakia Agriculture 0.41 [ 0.18 0.65 ] North Korea Construction 1.60 [ 0.26 2.93 ]
Belize Agriculture 0.86 [ 0.07 1.65 ] Slovenia Agriculture 0.31 [ 0.13 0.49 ] Norway Construction 0.92 [ 0.20 1.66 ]
Benin Agriculture 0.43 [ 0.15 0.71 ] Somalia Agriculture 0.52 [ 0.01 1.04 ] Pakistan Construction 0.36 [ 0.09 0.65 ]
Bosnia and Herzegovina Agriculture -0.11 [ -0.18 -0.03 ] South Africa Agriculture 0.43 [ 0.10 0.76 ] Panama Construction 0.72 [ 0.10 1.35 ]
Botswana Agriculture 0.15 [ 0.06 0.25 ] South Korea Agriculture 0.15 [ 0.07 0.24 ] Paraguay Construction 1.02 [ 0.24 1.82 ]
Brazil Agriculture 0.63 [ 0.10 1.18 ] South Sudan Agriculture 0.85 [ 0.37 1.33 ] Peru Construction 1.58 [ 0.23 2.89 ]
Brunei Agriculture 0.55 [ 0.15 0.95 ] Sudan Agriculture 0.54 [ 0.23 0.86 ] Portugal Construction 1.35 [ 0.20 2.46 ]
Bulgaria Agriculture 0.30 [ 0.12 0.48 ] Suriname Agriculture 0.55 [ 0.21 0.89 ] Qatar Construction 0.77 [ 0.16 1.40 ]
Burkina Faso Agriculture 0.42 [ 0.12 0.72 ] Sweden Agriculture 0.21 [ 0.09 0.33 ] Spain Construction 1.73 [ 0.34 3.11 ]
Burundi Agriculture 0.57 [ 0.02 1.13 ] Switzerland Agriculture 0.29 [ 0.12 0.46 ] Sri Lanka Construction 0.48 [ 0.11 0.87 ]
Cambodia Agriculture 0.29 [ 0.05 0.53 ] Syria Agriculture 0.41 [ 0.18 0.65 ] Sudan Construction 0.74 [ 0.13 1.37 ]
Cameroon Agriculture 0.66 [ 0.27 1.07 ] Tanzania Agriculture 0.77 [ 0.34 1.22 ] Suriname Construction 0.66 [ 0.08 1.27 ]
Central African Republic Agriculture 0.50 [ 0.09 0.92 ] Thailand Agriculture 0.06 [ 0.01 0.11 ] Swaziland Construction 0.96 [ 0.20 1.72 ]
Chad Agriculture 0.69 [ 0.22 1.17 ] Togo Agriculture 0.56 [ 0.03 1.08 ] Sweden Construction 0.58 [ 0.15 1.03 ]
Chile Agriculture 0.20 [ 0.02 0.37 ] Trinidad and Tobago Agriculture 0.63 [ 0.18 1.11 ] Switzerland Construction 0.41 [ 0.07 0.76 ]
Colombia Agriculture 1.26 [ 0.15 2.37 ] Tunisia Agriculture 0.30 [ 0.07 0.51 ] Syria Construction 0.52 [ 0.06 1.01 ]
Congo Agriculture 0.97 [ 0.23 1.73 ] Turkey Agriculture 0.72 [ 0.13 1.29 ] TFYR Macedonia Construction 0.67 [ 0.08 1.23 ]
Cote dIvoire Agriculture 0.50 [ 0.13 0.87 ] UAE Agriculture 0.46 [ 0.17 0.76 ] Tanzania Construction 1.15 [ 0.19 2.13 ]
Croatia Agriculture 0.30 [ 0.09 0.49 ] UK Agriculture 0.20 [ 0.02 0.38 ] Thailand Construction 0.20 [ 0.05 0.36 ]
Cyprus Agriculture 0.32 [ 0.10 0.53 ] Uganda Agriculture 0.57 [ 0.25 0.90 ] Togo Construction 1.45 [ 0.34 2.59 ]
DR Congo Agriculture 0.71 [ 0.29 1.14 ] Uruguay Agriculture 0.28 [ 0.08 0.49 ] Tunisia Construction 0.66 [ 0.17 1.18 ]
Denmark Agriculture 0.38 [ 0.05 0.72 ] Venezuela Agriculture 1.11 [ 0.26 2.01 ] Turkey Construction 1.40 [ 0.36 2.49 ]
Djibouti Agriculture 0.56 [ 0.15 0.94 ] Viet Nam Agriculture 0.65 [ 0.03 1.31 ] Turkmenistan Construction -1.21 [ -2.22 -0.20 ]
Dominican Republic Agriculture 0.80 [ 0.21 1.36 ] Zambia Agriculture 0.22 [ 0.05 0.39 ] UK Construction 0.73 [ 0.14 1.31 ]
Ecuador Agriculture 1.13 [ 0.37 1.85 ] Belarus Construction -0.36 [ -0.66 -0.05 ] USA Construction 1.15 [ 0.27 2.06 ]
Egypt Agriculture 0.74 [ 0.24 1.21 ] Cote dIvoire Construction 0.75 [ 0.15 1.37 ] Uganda Construction 0.66 [ 0.03 1.31 ]
El Salvador Agriculture 0.61 [ 0.20 1.01 ] Croatia Construction 0.27 [ 0.02 0.53 ] Ukraine Construction -0.69 [ -1.30 -0.08 ]
Eritrea Agriculture 0.24 [ 0.08 0.40 ] Cuba Construction 0.84 [ 0.19 1.51 ] Uzbekistan Construction -0.67 [ -1.21 -0.16 ]
Ethiopia Agriculture -0.35 [ -0.71 0.00 ] Cyprus Construction 0.39 [ 0.07 0.73 ] Viet Nam Construction 0.55 [ 0.04 1.07 ]
Finland Agriculture 0.15 [ 0.06 0.25 ] Czech Republic Construction -2.02 [ -3.87 -0.17 ] Chile Other activities 0.28 [ 0.01 0.62 ]
France Agriculture 0.31 [ 0.08 0.53 ] Denmark Construction 0.89 [ 0.21 1.60 ] France Other activities 0.67 [ 0.01 1.47 ]
Gabon Agriculture 0.83 [ 0.36 1.32 ] Djibouti Construction 1.04 [ 0.26 1.85 ] Czech Republic Transport. storage. communications -0.80 [ -1.66 0.00 ]
Georgia Agriculture -0.44 [ -0.70 -0.19 ] Dominican Republic Construction 1.64 [ 0.43 2.88 ] Ireland Transport. storage. communications 0.16 [ 0.00 0.33 ]
Germany Agriculture 0.40 [ 0.04 0.76 ] Ecuador Construction 1.04 [ 0.09 2.03 ] Cuba Wholesale, retail, hotel, restaurant 0.48 [ 0.01 0.94 ]
Ghana Agriculture 0.43 [ 0.20 0.68 ] Egypt Construction 0.91 [ 0.16 1.66 ] Czech Republic Wholesale, retail, hotel, restaurant -0.79 [ -1.60 0.00 ]
Greece Agriculture 0.62 [ 0.18 1.03 ] El Salvador Construction 0.63 [ 0.08 1.21 ] Denmark Wholesale, retail, hotel, restaurant 0.66 [ 0.02 1.29 ]
Guatemala Agriculture 0.61 [ 0.27 0.96 ] Eritrea Construction 0.15 [ 0.03 0.26 ] Eritrea Wholesale, retail, hotel, restaurant 0.22 [ 0.00 0.42 ]
Guyana Agriculture 0.51 [ 0.22 0.81 ] Estonia Construction -1.05 [ -1.95 -0.16 ] Estonia Wholesale, retail, hotel, restaurant -0.30 [ -0.58 -0.01 ]
Haiti Agriculture 0.56 [ 0.16 0.95 ] Georgia Construction -0.87 [ -1.61 -0.17 ] Germany Wholesale, retail, hotel, restaurant 0.74 [ 0.02 1.43 ]
Honduras Agriculture 0.47 [ 0.09 0.83 ] Germany Construction 1.00 [ 0.23 1.80 ] Guinea Wholesale, retail, hotel, restaurant 0.68 [ 0.02 1.33 ]
Hungary Agriculture 0.23 [ 0.10 0.37 ] Greece Construction 1.11 [ 0.27 1.98 ] India Wholesale, retail, hotel, restaurant 0.39 [ 0.00 0.77 ]
India Agriculture 0.37 [ 0.04 0.70 ] Greenland Construction 1.05 [ 0.26 1.88 ] Iraq Wholesale, retail, hotel, restaurant 0.56 [ 0.02 1.10 ]
Indonesia Agriculture 0.97 [ 0.45 1.52 ] Guatemala Construction 0.77 [ 0.09 1.50 ] Ireland Wholesale, retail, hotel, restaurant 0.17 [ 0.01 0.33 ]
Israel Agriculture 0.48 [ 0.15 0.82 ] Guinea Construction 1.25 [ 0.25 2.26 ] Italy Wholesale, retail, hotel, restaurant 0.78 [ 0.01 1.53 ]
Italy Agriculture 0.59 [ 0.13 1.04 ] Haiti Construction 1.17 [ 0.30 2.08 ] Japan Wholesale, retail, hotel, restaurant 0.96 [ 0.03 1.87 ]
Jamaica Agriculture 0.77 [ 0.34 1.23 ] Honduras Construction 0.90 [ 0.23 1.59 ] Kyrgyzstan Wholesale, retail, hotel, restaurant -0.40 [ -0.79 0.00 ]
Jordan Agriculture 0.40 [ 0.17 0.63 ] Iceland Construction 0.56 [ 0.08 1.04 ] Latvia Wholesale, retail, hotel, restaurant 0.65 [ 0.03 1.26 ]
Kenya Agriculture 0.54 [ 0.23 0.87 ] India Construction 0.72 [ 0.17 1.28 ] Lithuania Wholesale, retail, hotel, restaurant 0.50 [ 0.01 0.98 ]
Kuwait Agriculture 0.31 [ 0.09 0.53 ] Iran Construction 1.39 [ 0.34 2.47 ] Luxembourg Wholesale, retail, hotel, restaurant 0.31 [ 0.01 0.61 ]
Kyrgyzstan Agriculture -0.23 [ -0.40 -0.07 ] Iraq Construction 0.81 [ 0.16 1.47 ] Malawi Wholesale, retail, hotel, restaurant 0.62 [ 0.02 1.20 ]
Laos Agriculture 0.40 [ 0.17 0.63 ] Ireland Construction 0.28 [ 0.02 0.53 ] Maldives Wholesale, retail, hotel, restaurant 1.05 [ 0.03 2.04 ]
Lebanon Agriculture 0.41 [ 0.16 0.67 ] Italy Construction 1.30 [ 0.33 2.32 ] Mauritania Wholesale, retail, hotel, restaurant 0.22 [ 0.00 0.44 ]
Lesotho Agriculture 0.42 [ 0.12 0.71 ] Jamaica Construction 0.75 [ 0.03 1.51 ] Mexico Wholesale, retail, hotel, restaurant 0.70 [ 0.01 1.37 ]
Liberia Agriculture 0.37 [ 0.14 0.60 ] Japan Construction 1.40 [ 0.29 2.51 ] Montenegro Wholesale, retail, hotel, restaurant 0.49 [ 0.02 0.96 ]
Libya Agriculture 0.31 [ 0.11 0.51 ] Jordan Construction 0.44 [ 0.05 0.85 ] Morocco Wholesale, retail, hotel, restaurant 0.43 [ 0.00 0.85 ]
Liechtenstein Agriculture 0.34 [ 0.14 0.55 ] Kazakhstan Construction -0.64 [ -1.28 -0.05 ] Mozambique Wholesale, retail, hotel, restaurant 0.51 [ 0.01 1.01 ]
Lithuania Agriculture 0.32 [ 0.04 0.60 ] Kuwait Construction 1.00 [ 0.23 1.79 ] Myanmar Wholesale, retail, hotel, restaurant 0.56 [ 0.02 1.08 ]
Luxembourg Agriculture 0.23 [ 0.01 0.45 ] Kyrgyzstan Construction -1.09 [ -1.97 -0.25 ] Nepal Wholesale, retail, hotel, restaurant 0.21 [ 0.01 0.40 ]
Madagascar Agriculture 0.75 [ 0.31 1.19 ] Laos Construction 0.47 [ 0.06 0.90 ] Netherlands Wholesale, retail, hotel, restaurant 0.55 [ 0.01 1.06 ]
Malaysia Agriculture 0.69 [ 0.28 1.11 ] Latvia Construction 1.54 [ 0.24 2.82 ] Norway Wholesale, retail, hotel, restaurant 0.38 [ 0.01 0.74 ]
Mali Agriculture 0.39 [ 0.10 0.66 ] Lebanon Construction 0.56 [ 0.08 1.04 ] Pakistan Wholesale, retail, hotel, restaurant 0.24 [ 0.01 0.46 ]
Mauritania Agriculture 0.32 [ 0.05 0.58 ] Lesotho Construction 0.99 [ 0.25 1.76 ] Peru Wholesale, retail, hotel, restaurant 1.06 [ 0.05 2.06 ]
Mexico Agriculture 0.43 [ 0.08 0.78 ] Liberia Construction 0.70 [ 0.18 1.25 ] Portugal Wholesale, retail, hotel, restaurant 0.61 [ 0.03 1.20 ]
Mongolia Agriculture 0.74 [ 0.06 1.42 ] Libya Construction 0.58 [ 0.14 1.03 ] Spain Wholesale, retail, hotel, restaurant 0.77 [ 0.02 1.50 ]
Morocco Agriculture 0.44 [ 0.03 0.85 ] Liechtenstein Construction 0.50 [ 0.09 0.92 ] Sri Lanka Wholesale, retail, hotel, restaurant 0.39 [ 0.01 0.76 ]
Mozambique Agriculture 0.45 [ 0.05 0.84 ] Lithuania Construction 0.72 [ 0.17 1.29 ] Swaziland Wholesale, retail, hotel, restaurant 0.38 [ 0.01 0.75 ]
Namibia Agriculture 0.56 [ 0.24 0.90 ] Luxembourg Construction 0.77 [ 0.16 1.38 ] TFYR Macedonia Wholesale, retail, hotel, restaurant 0.20 [ 0.01 0.39 ]
New Caledonia Agriculture -0.51 [ -0.96 -0.09 ] Malawi Construction 1.36 [ 0.26 2.45 ] Togo Wholesale, retail, hotel, restaurant 0.59 [ 0.01 1.17 ]
Niger Agriculture 0.49 [ 0.16 0.80 ] Maldives Construction 1.35 [ 0.34 2.39 ] Turkmenistan Wholesale, retail, hotel, restaurant -0.40 [ -0.79 -0.01 ]
Nigeria Agriculture 0.63 [ 0.15 1.09 ] Mali Construction 0.88 [ 0.22 1.57 ] UK Wholesale, retail, hotel, restaurant 0.51 [ 0.02 0.99 ]
Norway Agriculture 0.24 [ 0.02 0.47 ] Malta Construction 0.55 [ 0.11 1.01 ] USA Wholesale, retail, hotel, restaurant 1.81 [ 0.07 3.51 ]
Oman Agriculture 0.54 [ 0.25 0.85 ] Mauritania Construction 0.59 [ 0.14 1.05 ] Ukraine Wholesale, retail, hotel, restaurant -0.21 [ -0.42 -0.01 ]
Pakistan Agriculture 0.15 [ 0.02 0.27 ] Mexico Construction 1.18 [ 0.26 2.12 ]
Panama Agriculture 0.56 [ 0.24 0.89 ] Moldova Construction -0.18 [ -0.34 -0.03 ]

Notes: The table reports the average loss for each sector as a % loss in GVA per capita relative to the observed production between 2001 and 2020, accounting for own, domestic and foreign heat shocks. 95% confidence intervals are obtained from 1000 estimates from
bootstrapping Equation 8.
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A.3 Computing the economic cost of the propagation of recent

warming

To understand the differential cost of propagation of recent warming, I use the estimates

of Equation (8) for the marginal effect of own, domestic and foreign heat shocks to sim-

ulate how much slower or faster each sector would have grown annually over the 2001-

2020 period, compared to a scenario under which the number of hot days above the 95th

percentile increases according to its historical trend of 1970-2000. To do so, I estimate

country-specific regressions of the type Tct = αc+βct+εct in the 1970-2000 sample, where

Tct is the number of days above the 95th percentile of the country-specific daily average

temperature distribution, to obtain country-specific trends and use β̂c to construct a coun-

terfactual scenario T̃ 95
sct of the number of hot days. I assume that the trend is linear and

such trend does not affect the volatility of temperature shocks, which most likely results

in an under-estimation of the adverse effects.

I then average these effects over 2001-2020 period to obtain a sector-specific relative

measure of estimated losses in value added. I finally compare the estimated losses in value

omitting and accounting for the transmission of shocks across countries through trade

interlinkages. As in Burke and Tanutama (2019), this computation does not necessarily

represent the differential impact of recent anthropogenic warming accounting for network

shocks and is instead agnostic to the cause of recent warming.

First, I compute the annual cost/benefit of annual warming in 2001-2020 compared to

a counterfactual scenario in which the 1970-2000 average number of heat shocks evolves

linearly and distinguish between omitting and accounting for weather shocks in trade

partners:

gdirectsct = γ̂s(T
95
sct − T̃ 95

sct) (10)

gspilloversct = (γ̂sT
95
sct + γ̂D

sT
95,D
sct + γ̂F

sT
95,F
sct )− (γ̂sT̃

95
sct + γ̂D

sT̃
95,D
sct + γ̂F

sT̃
95,F
sct ) (11)

where T 95
ct is the observed number of days above 95th percentile in sector s in country

c in year t, T̃ 95
sct is the counterfactual predicted number had the 1970-2000 average evolved
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linearly, T 95,J
sct is the weighted average number of days above 95th percentile in trade

partners J (where J ∈ {Foreign, Domestic}) from the perspective of sector s in country c

in year t. γs’s are the sector-specific coefficient estimates for the effect of own, domestic

and foreign heat shocks on sectoral growth rate from Equation (8). I compute sector s’s

counterfactual value added level in year t omitting and accounting for indirect shocks

Ŷ p
sct = Ysct−1 + ysct + gpsct (12)

where hatted term indicates a counterfactual, Y is the (log) GVA per capita, y is the

observed growth rate and p ∈ {direct, spillover}. I can then compute the average relative

loss in GVA for sector s in country c over the 2001-2020 period as

%LOSSp

sc =
1

T

2020∑
t=2001

eŶ
p
sct − eYsct

eYsct
(13)

to obtain a measure of the average cost of recent warming at the sector level omitting

and accounting for the propagation of heat shocks (reported in Figure A21).

The aggregated average loss in GVA across sectors for country c is

%LOSSp

c =
∑
s

%λscLOSSp

sc (14)

where λsc is the average share of total GVA of sector s in country c between 2001

and 2020. The country-level losses omitting and accounting for indirect heat shocks are

reported in Figure 7.
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